Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
137 changes: 51 additions & 86 deletions backend/pkg/api/data_access/vdb_summary.go
Original file line number Diff line number Diff line change
Expand Up @@ -849,24 +849,19 @@ func (d *DataAccessService) GetValidatorDashboardSummaryChart(ctx context.Contex

var queryResults []*t.VDBValidatorSummaryChartRow

containsGroups := false
requestedGroupsMap := make(map[int64]bool)
for _, groupId := range groupIds {
requestedGroupsMap[groupId] = true
if !containsGroups && groupId >= 0 {
containsGroups = true
}
Comment on lines -852 to -858
Copy link
Contributor Author

@LuccaBitfly LuccaBitfly May 26, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

note: containsGroups was unused, not sure what this was needed for

}

// need default or all groups for anon dashboards and shared dashboards without group sharing
// TODO could move this to API layer & generalize for all methods
if (dashboardId.Validators != nil && !requestedGroupsMap[t.AllGroups] && !requestedGroupsMap[t.DefaultGroupId]) ||
(dashboardId.AggregateGroups && !requestedGroupsMap[t.AllGroups] && !requestedGroupsMap[t.DefaultGroupId]) {
if (dashboardId.Validators != nil || dashboardId.AggregateGroups) && !requestedGroupsMap[t.AllGroups] && !requestedGroupsMap[t.DefaultGroupId] {
return ret, nil
}

totalLineRequested := requestedGroupsMap[t.AllGroups] || dashboardId.AggregateGroups
averageNetworkLineRequested := requestedGroupsMap[t.NetworkAverage]
hasTotalSeries := requestedGroupsMap[t.AllGroups] || dashboardId.AggregateGroups
hasNetworkAvgSeries := requestedGroupsMap[t.NetworkAverage]

var dividendColumn, divisorColumn string
switch efficiency {
Expand Down Expand Up @@ -916,8 +911,8 @@ func (d *DataAccessService) GetValidatorDashboardSummaryChart(ctx context.Contex
Where(
goqu.I("dashboard_id").Eq(dashboardId.Id),
goqu.Or(
goqu.V(hasTotalSeries),
goqu.I("group_id").In(groupIds),
goqu.V(totalLineRequested),
),
),
).
Expand All @@ -940,39 +935,48 @@ func (d *DataAccessService) GetValidatorDashboardSummaryChart(ctx context.Contex
return nil, fmt.Errorf("error retrieving data from table %s: %w", dataTable, err)
}

// convert the returned data to the expected return type (not pretty)
tsMap := make(map[time.Time]bool)
data := make(map[time.Time]map[int64]*float64)
groupMap := make(map[int64]bool)
// map from `timestamp:groupId` to row pointer
type key struct {
Timestamp uint64
GroupId int64
}
rowsMap := make(map[key]*t.VDBValidatorSummaryChartRow)
Comment on lines +939 to +943
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

note: https://go.dev/blog/maps#key-types recommends to use key types instead of multidimensional maps.


totalEfficiencyMap := make(map[time.Time]*t.VDBValidatorSummaryChartRow)
for _, row := range queryResults {
tsMap[row.Timestamp] = true
if data[row.Timestamp] == nil {
data[row.Timestamp] = make(map[int64]*float64)
}
// fill rowsMap with the results
totalSeriesId := int64(t.AllGroups)
if dashboardId.AggregateGroups {
totalSeriesId = t.DefaultGroupId
}

timestamps := map[uint64]struct{}{} // set of timestamps
series := map[int64]struct{}{} // set of series ids
for _, row := range queryResults {
ts := uint64(row.Timestamp.Unix())
timestamps[ts] = struct{}{}
if !dashboardId.AggregateGroups && requestedGroupsMap[row.GroupId] {
eff := calcEfficiencyNulled(row.EfficiencyDividend, row.EfficiencyDivisor)
if eff == nil {
continue
}
data[row.Timestamp][row.GroupId] = eff
groupMap[row.GroupId] = true
series[row.GroupId] = struct{}{}
rowsMap[key{ts, row.GroupId}] = row
}

if totalLineRequested {
if totalEfficiencyMap[row.Timestamp] == nil {
totalEfficiencyMap[row.Timestamp] = &t.VDBValidatorSummaryChartRow{
Timestamp: row.Timestamp,
}
}
totalEfficiencyMap[row.Timestamp].EfficiencyDividend = totalEfficiencyMap[row.Timestamp].EfficiencyDividend.Add(row.EfficiencyDividend)
totalEfficiencyMap[row.Timestamp].EfficiencyDivisor = totalEfficiencyMap[row.Timestamp].EfficiencyDivisor.Add(row.EfficiencyDivisor)
if !hasTotalSeries {
continue
}
series[totalSeriesId] = struct{}{}
// add up to total row for the timestamp
totalKey := key{ts, totalSeriesId}
if rowsMap[totalKey] == nil {
rowsMap[totalKey] = &t.VDBValidatorSummaryChartRow{}
}
rowsMap[totalKey].EfficiencyDividend = rowsMap[totalKey].EfficiencyDividend.Add(row.EfficiencyDividend)
rowsMap[totalKey].EfficiencyDivisor = rowsMap[totalKey].EfficiencyDivisor.Add(row.EfficiencyDivisor)
}

data := make(map[key]*float64) // map from `timestamp:groupId` to efficiency value
// calculate the efficiency for each group and timestamp
for key, value := range rowsMap {
data[key] = calcEfficiencyNulled(value.EfficiencyDividend, value.EfficiencyDivisor)
}

if averageNetworkLineRequested {
if hasNetworkAvgSeries {
// Get the average network efficiency
efficiency, err := d.services.GetCurrentEfficiencyInfo()
if err != nil {
Expand All @@ -983,63 +987,24 @@ func (d *DataAccessService) GetValidatorDashboardSummaryChart(ctx context.Contex
averageNetworkEfficiency = efficiency.AttestationEfficiency[enums.Last24h].Float64 * 100
}

for ts := range tsMap {
data[ts][int64(t.NetworkAverage)] = &averageNetworkEfficiency
for ts := range timestamps {
data[key{ts, t.NetworkAverage}] = &averageNetworkEfficiency
}
groupMap[t.NetworkAverage] = true
series[t.NetworkAverage] = struct{}{}
}

if totalLineRequested {
totalLineGroupId := int64(t.AllGroups)
if dashboardId.AggregateGroups {
totalLineGroupId = t.DefaultGroupId
ret.Categories = slices.Sorted(maps.Keys(timestamps))
for _, seriesId := range slices.Sorted(maps.Keys(series)) {
seriesData := make([]*float64, len(ret.Categories))
for i, ts := range ret.Categories {
seriesData[i] = data[key{ts, seriesId}]
}
for _, row := range totalEfficiencyMap {
data[row.Timestamp][totalLineGroupId] = calcEfficiencyNulled(row.EfficiencyDividend, row.EfficiencyDivisor)
}
groupMap[totalLineGroupId] = true
}

tsArray := make([]time.Time, 0, len(tsMap))
for ts := range tsMap {
tsArray = append(tsArray, ts)
}
sort.Slice(tsArray, func(i, j int) bool {
return tsArray[i].Before(tsArray[j])
})

groupsArray := slices.Collect(maps.Keys(groupMap))
slices.Sort(groupsArray)

ret.Categories = make([]uint64, 0, len(tsArray))
for _, ts := range tsArray {
ret.Categories = append(ret.Categories, uint64(ts.Unix()))
}
ret.Series = make([]t.ChartSeries[int, *float64], 0, len(groupsArray))

seriesMap := make(map[int64]*t.ChartSeries[int, *float64])
for _, group := range groupsArray {
series := t.ChartSeries[int, *float64]{
Id: int(group),
Data: make([]*float64, 0, len(tsMap)),
}
seriesMap[group] = &series
}

for _, ts := range tsArray {
for _, group := range groupsArray {
seriesMap[group].Data = append(seriesMap[group].Data, data[ts][group])
}
}

for _, series := range seriesMap {
ret.Series = append(ret.Series, *series)
ret.Series = append(ret.Series, t.ChartSeries[int, *float64]{
Id: int(seriesId),
Data: seriesData,
})
}

sort.Slice(ret.Series, func(i, j int) bool {
return ret.Series[i].Id < ret.Series[j].Id
})

return ret, nil
}

Expand Down
Loading