Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 78 additions & 0 deletions tests/examples/test_all_store_bench.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: MIT
# Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved.

import pytest
import torch
import triton
import triton.language as tl
import numpy as np
import iris

import importlib.util
from pathlib import Path

current_dir = Path(__file__).parent
file_path = (current_dir / "../../examples/03_all_store/all_store_bench.py").resolve()
module_name = "all_store_bench"
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)


@pytest.mark.parametrize(
"dtype",
[
torch.int8,
torch.float16,
torch.bfloat16,
torch.float32,
],
)
@pytest.mark.parametrize(
"buffer_size, heap_size",
[
((1 << 32), (1 << 33)),
],
)
@pytest.mark.parametrize(
"block_size",
[
512,
1024,
],
)
def test_all_store_bench(dtype, buffer_size, heap_size, block_size):
shmem = iris.iris(heap_size)
num_ranks = shmem.get_num_ranks()
cur_rank = shmem.get_rank()

element_size_bytes = torch.tensor([], dtype=dtype).element_size()
n_elements = buffer_size // element_size_bytes
buffer = shmem.zeros(n_elements, device="cuda", dtype=dtype)

# Simple test similar to load_bench - just test the kernel functionality
# without the complex benchmarking infrastructure
grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)

# Test all_store_kernel directly, similar to how load_bench tests the load_kernel
if cur_rank < min(num_ranks, 8): # Only test with a reasonable number of ranks
module.all_store_kernel[grid](
buffer,
cur_rank,
n_elements,
num_ranks,
block_size,
shmem.get_heap_bases(),
)


def _torch_dtype_to_str(dtype):
"""Helper function to convert torch dtype to string format expected by the module"""
dtype_map = {
torch.float16: "fp16",
torch.float32: "fp32",
torch.int8: "int8",
torch.bfloat16: "bf16",
}
return dtype_map[dtype]