Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions chapter03.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -44,11 +44,11 @@
"\n",
"首先,并不是所有的方阵都有逆;而如果逆存在,则有$A^{-1}A=I=AA^{-1}$。教授这里提前剧透,对于方阵,左逆和右逆是相等的,但是对于非方阵(长方形矩阵),其左逆不等于右逆。\n",
"\n",
"对于这些有逆的矩阵,我们称其为可逆的或非奇异的。我们先来看看奇异矩阵(不可逆的):$A=\\begin{bmatrix}1&2\\\\3&6\\end{bmatrix}$,在后面将要学习的行列式中,会发现这个矩阵的行列式为$0$。\n",
"对于这些有逆的矩阵,我们称其为可逆的或非奇异的。我们先来看看奇异矩阵(不可逆的):$A=\\begin{bmatrix}1&3\\\\2&6\\end{bmatrix}$,在后面将要学习的行列式中,会发现这个矩阵的行列式为$0$。\n",
"\n",
"观察这个方阵,我们如果用另一个矩阵乘$A$,则得到的结果矩阵中的每一列应该都是$\\begin{bmatrix}1\\\\2\\end{bmatrix}$的倍数,所以我们不可能从$AB$的乘积中得到单位矩阵$I$。\n",
"\n",
"另一种判定方法,如果$A$乘以任意非零向量能够得到$0$向量,则矩阵$A$不可逆,即使用$Ax=0$判定。我们来用上面的矩阵为例:$\\begin{bmatrix}1&2\\\\3&6\\end{bmatrix}\\begin{bmatrix}3\\\\-1\\end{bmatrix}=\\begin{bmatrix}0\\\\0\\end{bmatrix}$。\n",
"另一种判定方法,如果$A$乘以任意非零向量能够得到$0$向量,则矩阵$A$不可逆,即使用$Ax=0$判定。我们来用上面的矩阵为例:$\\begin{bmatrix}1&3\\\\2&6\\end{bmatrix}\\begin{bmatrix}3\\\\-1\\end{bmatrix}=\\begin{bmatrix}0\\\\0\\end{bmatrix}$。\n",
"\n",
"证明:如果对于非零的$x$仍有$Ax=0$,而$A$有逆$A^{-1}$,则$A^{-1}Ax=0$,即$x=0$,与题设矛盾,得证。\n",
"\n",
Expand Down