-
pip install -r requirements.txt -
install Matlab Python engine
-
git clone [email protected]:tensors/tensor_toolbox.git
-
load_data.pyloads raw text as a N by D index matrix -
doc2vec.pycalculates tensor embeddings for each sentence -
label_progagation.pycalculates labels with label propagation -
tensor_decomp_twitter.pycalculates lexical centrality
-
download SemEval 2017 Task dataset, and put it into
./data -
python tensor_decomp_twitter.py -
python taskb_eval_script.py
-
put
16000 one linersandpun of the daydatasets into./data -
python cv_portion.py --option <option> --label_portion <label_portion>, where<option>can be16000onelinersorPun(corresponding to the16000 one linersandpun of the daydatasets, respectively),<label_portion>is a float number of training percentage, such as 0.1
- the dataset paths are configurated in
config.py
GNU GENERAL PUBLIC LICENSE