Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ string(TOUPPER "${CMAKE_BUILD_TYPE}" U_CMAKE_BUILD_TYPE)
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang" OR CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Intel")
CHECK_CXX_COMPILER_FLAG("-std=c++14" HAS_CPP14_FLAG)
if (HAS_CPP14_FLAG)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Ofast -ffast-math -march=native -std=c++14 -pthread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Ofast -ffast-math -march=native -std=c++14 -pthread -Wno-narrowing")
else()
message(FATAL_ERROR "Unsupported compiler -- xtensor requires C++14 support!")
endif()
Expand Down Expand Up @@ -150,9 +150,10 @@ endif()
message("Found xsimd : ${xsimd_INCLUDE_DIRS}\n\n")

if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/src/profile_snip.cpp)
add_executable(profile_snip
src/profile_snip.cpp
${XTENSOR_HEADERS})
add_executable(profile_snip
EXCLUDE_FROM_ALL
src/profile_snip.cpp
${XTENSOR_HEADERS})
endif()

add_custom_target(xbenchmark
Expand Down
118 changes: 94 additions & 24 deletions src/benchmark_broadcasting.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
#include "xtensor/xrandom.hpp"
#include "xtensor/xtensor.hpp"
#include "xtensor/xarray.hpp"
#include "xtensor/xfixed.hpp"

#ifdef HAS_PYTHONIC
#include <pythonic/core.hpp>
Expand All @@ -27,37 +28,106 @@

namespace xt
{
void xtensor_broadcasting(benchmark::State& state)
{
using namespace xt;
using allocator = xsimd::aligned_allocator<double, 32>;
using tensor3 = xtensor_container<xt::uvector<double, allocator>, 3, layout_type::row_major>;
using tensor2 = xtensor_container<xt::uvector<double, allocator>, 2, layout_type::row_major>;
void xtensor_broadcasting(benchmark::State& state)
{
using namespace xt;
using allocator = xsimd::aligned_allocator<double, 32>;
using tensor3 = xtensor_container<xt::uvector<double, allocator>, 3, layout_type::row_major>;
using tensor2 = xtensor_container<xt::uvector<double, allocator>, 2, layout_type::row_major>;

tensor3 a = random::rand<double>({state.range(0), state.range(0), state.range(0)});
tensor2 b = random::rand<double>({state.range(0), state.range(0)});
tensor3 a = random::rand<double>({state.range(0), state.range(0), state.range(0)});
tensor2 b = random::rand<double>({state.range(0), state.range(0)});

for (auto _ : state)
{
tensor3 res(a + b);
benchmark::DoNotOptimize(res.raw_data());
}
}
BENCHMARK(xtensor_broadcasting)->RangeMultiplier(MULTIPLIER)->Range(RANGE);
{
tensor3 res(a + b);
benchmark::DoNotOptimize(res.raw_data());
}
}
BENCHMARK(xtensor_broadcasting)->RangeMultiplier(MULTIPLIER)->Range(RANGE);

void xarray_broadcasting(benchmark::State& state)
{
using namespace xt;
using allocator = xsimd::aligned_allocator<double, 32>;
using tensor3 = xarray_container<xt::uvector<double, allocator>, layout_type::row_major>;
using tensor2 = xarray_container<xt::uvector<double, allocator>, layout_type::row_major>;

tensor3 a = random::rand<double>({state.range(0), state.range(0), state.range(0)});
tensor2 b = random::rand<double>({state.range(0), state.range(0)});

for (auto _ : state)
{
tensor3 res(a + b);
benchmark::DoNotOptimize(res.raw_data());
}
}
BENCHMARK(xarray_broadcasting)->RangeMultiplier(MULTIPLIER)->Range(RANGE);

template <std::size_t N>
void manual_broadcast_xtensorf(benchmark::State& state)
{
auto a = xt::xtensorf<double, xt::xshape<N, N, N>>();
auto b = xt::xtensorf<double, xt::xshape<N, N>>();
for (auto _ : state)
{
auto c = xt::xtensorf<double, xt::xshape<N, N, N>>();
for (std::size_t i = 0; i < a.shape()[0]; ++i)
for (std::size_t j = 0; j < a.shape()[1]; ++j)
for (std::size_t k = 0; k < a.shape()[2]; ++k)
c(i, j, k) = a(i, j, k) + b(i, j, k);
benchmark::DoNotOptimize(c.raw_data());
}
}
BENCHMARK_TEMPLATE(manual_broadcast_xtensorf, 3);
BENCHMARK_TEMPLATE(manual_broadcast_xtensorf, 8);
BENCHMARK_TEMPLATE(manual_broadcast_xtensorf, 64);

void manual_broadcast_xtensor(benchmark::State& state)
{
auto a = xt::xtensor<double, 3>::from_shape({state.range(0), state.range(0), state.range(0)});
auto b = xt::xtensor<double, 2>::from_shape({state.range(0), state.range(0)});
for (auto _ : state)
{
xt::xtensor<double, 3> c = xt::xtensor<double, 3>::from_shape({state.range(0), state.range(0), state.range(0)});
for (std::size_t i = 0; i < a.shape()[0]; ++i)
for (std::size_t j = 0; j < a.shape()[1]; ++j)
for (std::size_t k = 0; k < a.shape()[2]; ++k)
c(i, j, k) = a(i, j, k) + b(i, j, k);
benchmark::DoNotOptimize(c.raw_data());
}
}
BENCHMARK(manual_broadcast_xtensor)->RangeMultiplier(MULTIPLIER)->Range(RANGE);

void manual_broadcast_xarray(benchmark::State& state)
{
auto a = xt::xarray<double>::from_shape({state.range(0), state.range(0), state.range(0)});
auto b = xt::xarray<double>::from_shape({state.range(0), state.range(0)});
for (auto _ : state)
{
xt::xarray<double> c = xt::xarray<double>::from_shape({state.range(0), state.range(0), state.range(0)});
for (std::size_t i = 0; i < a.shape()[0]; ++i)
for (std::size_t j = 0; j < a.shape()[1]; ++j)
for (std::size_t k = 0; k < a.shape()[2]; ++k)
c(i, j, k) = a(i, j, k) + b(i, j, k);
benchmark::DoNotOptimize(c.raw_data());
}
}
BENCHMARK(manual_broadcast_xarray)->RangeMultiplier(MULTIPLIER)->Range(RANGE);

#ifdef HAS_PYTHONIC
void pythonic_broadcasting(benchmark::State& state)
{
auto x = pythonic::numpy::random::rand(state.range(0), state.range(0), state.range(0));
auto y = pythonic::numpy::random::rand(state.range(0), state.range(0));
void pythonic_broadcasting(benchmark::State& state)
{
auto x = pythonic::numpy::random::rand(state.range(0), state.range(0), state.range(0));
auto y = pythonic::numpy::random::rand(state.range(0), state.range(0));

for (auto _ : state)
{
pythonic::types::ndarray<double, 3> z = x + y;
benchmark::DoNotOptimize(z.fbegin());
}
}
BENCHMARK(pythonic_broadcasting)->RangeMultiplier(MULTIPLIER)->Range(RANGE);
{
pythonic::types::ndarray<double, 3> z = x + y;
benchmark::DoNotOptimize(z.fbegin());
}
}
BENCHMARK(pythonic_broadcasting)->RangeMultiplier(MULTIPLIER)->Range(RANGE);
#endif

}
Expand Down
Loading