This project is Group 45's take of the mandatory assignment part of the course "Deep Learning (CS4240)" from TU Delft's CS Masters' program.
- Albert Solà Roca
- Theodoros Veneti
- Ronan Hochart
We opted to (try and) reproduce the results from Maurizio Ferrari Dacrema (https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation) who in his turn tried to reproduce the findings from a number of different research from major conferences (such as SIGIR, KNN, RecSys and WWW). Specifically, their work succeeded in reproducing 7 out of the 18 papers selected. We tried to also reproduce these 7 papers but also took a shot with the unreproduced ones, to see why they were deemed unreproducible.
MCREC : Results from the MCRec method presented at KDD '18.
Dataet:Movie-Lens100k
Method | PREC@10 | REC@10 | NDCG@10 |
---|---|---|---|
TopPopular | 0.1907 | 0.1180 | 0.1361 |
UserKNN | 0.2913 | 0.1802 | 0.2055 |
ItemKNN | 0.3327 | 0.2199 | 0.2603 |
P3α | 0.2137 | 0.1585 | 0.1838 |
RP3β | 0.2357 | 0.1684 | 0.1923 |
MCRec | 0.3077 | 0.2061 | 0.2363 |
Our results
Method | PREC@10 | REC@10 | NDCG@10 |
---|---|---|---|
TopPopular | 0.1907 | 0.1180 | 0.2184 |
UserKNN | 0.3370 | 0.2097 | 0.3917 |
ItemKNN | 0.3373 | 0.2235 | 0.4065 |
P3α | 0.3361 | 0.2200 | 0.4073 |
RP3β | 0.3454 | 0.2230 | 0.4118 |
MCRec | 0.3047 | 0.2046 | 0.3617 |
CVAE : Results from the CVAE method presented at KDD '18.
Dataset:CiteULike-a
Method | REC@50 | REC@100 | REC@300 |
---|---|---|---|
TopPopular | 0.0044 | 0.0081 | 0.0258 |
UserKNN | 0.0683 | 0.1016 | 0.1685 |
ItemKNN | 0.0788 | 0.1153 | 0.1823 |
P3α | 0.0788 | 0.1151 | 0.1784 |
RP3β | 0.0811 | 0.1184 | 0.1799 |
ItemKNN-CFCBF | 0.1837 | 0.2777 | 0.4486 |
CVAE | 0.0772 | 0.1548 | 0.3602 |
Our results
Method | REC@50 | REC@100 | REC@300 |
---|---|---|---|
TopPopular | 0.0040 | 0.0078 | 0.0258 |
UserKNN | 0.0765 | 0.1166 | 0.2013 |
ItemKNN | 0.0989 | 0.1440 | 0.2301 |
P3α | 0.0907 | 0.1341 | 0.2206 |
RP3β | 0.0964 | 0.1406 | 0.2240 |
ItemKNN-CFCBF | 0.1905 | 0.2896 | 0.4740 |
CVAE | 0.0818 | 0.1593 | 0.3742 |
NEUMF : Results from the NeuMF method presented at WWW '17.
Dataset:Pinterest
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.1663 | 0.1065 | 0.2744 | 0.1412 |
UserKNN | 0.7001 | 0.5033 | 0.8610 | 0.5557 |
ItemKNN | 0.7100 | 0.5092 | 0.8744 | 0.5629 |
P3α | 0.7008 | 0.5018 | 0.8667 | 0.5559 |
RP3β | 0.7105 | 0.5116 | 0.8740 | 0.5650 |
NeuMF | 0.7024 | 0.4983 | 0.8719 | 0.5536 |
Our results
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.1665 | 0.1064 | 0.2740 | 0.1409 |
UserKNN | 0.7042 | 0.5051 | 0.8656 | 0.5577 |
ItemKNN | 0.7126 | 0.5118 | 0.8778 | 0.5656 |
P3α | 0.7016 | 0.5018 | 0.8687 | 0.5563 |
RP3β | 0.7139 | 0.5141 | 0.8775 | 0.5674 |
NeuMF | 0.7046 | 0.4994 | 0.8766 | 0.5556 |
Dataset:MovieLens-1m
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.3043 | 0.2062 | 0.4531 | 0.2542 |
UserKNN | 0.4916 | 0.3328 | 0.6705 | 0.3908 |
ItemKNN | 0.4829 | 0.3328 | 0.6596 | 0.3900 |
P3α | 0.4811 | 0.3331 | 0.6464 | 0.3867 |
RP3β | 0.4922 | 0.3409 | 0.6715 | 0.3867 |
NeuMF | 0.5486 | 0.3840 | 0.7120 | 0.4369 |
SLIM | 0.5589 | 0.3961 | 0.7161 | 0.4470 |
Our results
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.3048 | 0.2064 | 0.4533 | 0.2542 |
UserKNN | 0.4921 | 0.3319 | 0.6714 | 0.3899 |
ItemKNN | 0.4914 | 0.3377 | 0.6624 | 0.3931 |
P3α | 0.4687 | 0.3232 | 0.6430 | 0.3796 |
RP3β | 0.4947 | 0.3418 | 0.6694 | 0.3985 |
NeuMF | 0.5406 | 0.3807 | 0.7098 | 0.4356 |
SLIM | 0.5560 | 0.3939 | 0.7136 | 0.4450 |
SPECTRALCF: Results from SpectralCF method presented at RecSys '18.
Dataset:MovieLens-1m
Method | REC@20 | MAP@20 | REC@60 | MAP@60 | REC@100 | MAP@100 |
---|---|---|---|---|---|---|
TopPopular | 0.1853 | 0.0576 | 0.3335 | 0.0659 | 0.4244 | 0.0696 |
UserKNN CF | 0.2881 | 0.1106 | 0.4780 | 0.1238 | 0.5790 | 0.1290 |
ItemKNN CF | 0.2819 | 0.1059 | 0.4712 | 0.1190 | 0.5737 | 0.1243 |
P^3α | 0.2853 | 0.1051 | 0.4808 | 0.1195 | 0.5760 | 0.1248 |
RP^3β | 0.2910 | 0.1088 | 0.4882 | 0.1233 | 0.5884 | 0.1288 |
SpectralCF | 0.1843 | 0.0539 | 0.3274 | 0.0618 | 0.4254 | 0.0656 |
Our results
Method | REC@20 | MAP@20 | REC@60 | MAP@60 | REC@100 | MAP@100 |
---|---|---|---|---|---|---|
TopPopular | 0.1941 | 0.0611 | 0.3399 | 0.0693 | 0.4299 | 0.0729 |
UserKNN CF | 0.3013 | 0.1219 | 0.4870 | 0.1349 | 0.5851 | 0.1400 |
ItemKNN CF | 0.2972 | 0.1180 | 0.4864 | 0.1309 | 0.5847 | 0.1361 |
P^3α | 0.3025 | 0.1174 | 0.4981 | 0.1316 | 0.5935 | 0.1371 |
RP^3β | 0.3101 | 0.1225 | 0.5071 | 0.1369 | 0.6058 | 0.1424 |
SpectralCF | 0.1619 | 0.0488 | 0.3132 | 0.0567 | 0.4037 | 0.0598 |
MVAE : Results from the Mult-VAE method presented at WWW '18.
Dataset:Netflix
Method | REC@20 | NDCG@20 | REC@50 | NDCG@50 | REC@100 | NDCG@100 |
---|---|---|---|---|---|---|
TopPopular | 0.0782 | 0.1643 | 0.1570 | |||
ItemKNN CF | 0.2088 | 0.3386 | 0.3086 | |||
P^3α | 0.1977 | 0.3346 | 0.2967 | |||
RP^3β | 0.2196 | 0.3560 | 0.3246 | |||
SLIM | 0.2551 | 0.2473 | 0.3995 | 0.3196 | 0.5289 | 0.3745 |
Mul-VAE | 0.2626 | 0.2448 | 0.4138 | 0.3192 | 0.5476 | 0.3756 |
Our results
Method | REC@20 | NDCG@20 | REC@50 | NDCG@50 | REC@100 | NDCG@100 |
---|---|---|---|---|---|---|
TopPopular | 0.0782 | 0.1643 | 0.1570 | |||
ItemKNN CF | 0.2088 | 0.3386 | 0.3086 | |||
P^3α | 0.1977 | 0.3346 | 0.2967 | |||
RP^3β | 0.2196 | 0.3560 | 0.3246 | |||
SLIM | 0.2551 | 0.2473 | 0.3995 | 0.3196 | 0.5289 | 0.3745 |
Mul-VAE | 0.2641 | 0.3163 | 0.4174 | 0.3417 | 0.5508 | 0.3829 |
CDL : Results from the CDL method presented at KDD '15.
Dataset:CiteULike-a
Method | REC@50 | REC@100 | REC@300 |
---|---|---|---|
TopPopular | 0.0038 | 0.0073 | 0.0258 |
UserKNN | 0.0685 | 0.1028 | 0.1710 |
ItemKNN | 0.0846 | 0.1213 | 0.1861 |
P^3α | 0.0718 | 0.1079 | 0.1777 |
RP^3β | 0.0800 | 0.1167 | 0.1815 |
ItemKNN-CBF | 0.2135 | 0.3038 | 0.4707 |
ItemKNN-CFCBF | 0.1945 | 0.2896 | 0.4620 |
Mul-VAE | 0.0543 | 0.1035 | 0.2627 |
CMN : Results from the CMN method presented at SIGIR '18.
Dataset:CiteUlike-a
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.1803 | 0.1220 | 0.2783 | 0.1535 |
UserKNN | 0.8213 | 0.7033 | 0.8935 | 0.7268 |
ItemKNN | 0.8116 | 0.6939 | 0.8878 | 0.7187 |
P3α | 0.8202 | 0.7061 | 0.8901 | 0.7289 |
RP3β | 0.8226 | 0.7114 | 0.8941 | 0.7347 |
CMN | 0.8069 | 0.6666 | 0.8910 | 0.6942 |
Our results
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.1810 | 0.1226 | 0.2774 | 0.1537 |
UserKNN | 0.8332 | 0.7148 | 0.8982 | 0.7361 |
ItemKNN | 0.8209 | 0.6995 | 0.8910 | 0.7225 |
P3α | 0.8280 | 0.7148 | 0.8959 | 0.7369 |
RP3β | 0.8350 | 0.7255 | 0.9013 | 0.7472 |
CMN |
Dataset:Pinterest
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.1668 | 0.1066 | 0.2745 | 0.1411 |
UserKNN | 0.6886 | 0.4936 | 0.8527 | 0.5470 |
ItemKNN | 0.6966 | 0.4994 | 0.8647 | 0.5542 |
P3α | 0.6871 | 0.4935 | 0.8449 | 0.5450 |
RP3β | 0.7018 | 0.5041 | 0.8644 | 0.5571 |
CMN | 0.6872 | 0.4883 | 0.8549 | 0.5430 |
Our results
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.1665 | 0.1064 | 0.2740 | 0.1409 |
UserKNN | 0.7045 | 0.5060 | 0.8670 | 0.5589 |
ItemKNN | 0.7126 | 0.5118 | 0.8778 | 0.5656 |
P3α | 0.7025 | 0.5041 | 0.8657 | 0.5574 |
RP3β | 0.7160 | 0.5162 | 0.8795 | 0.5694 |
CMN |
Dataset:Epinions
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.5429 | 0.4153 | 0.6644 | 0.4547 |
UserKNN | 0.3506 | 0.2983 | 0.3922 | 0.3117 |
ItemKNN | 0.3821 | 0.3165 | 0.4372 | 0.3343 |
P3α | 0.3510 | 0.2989 | 0.3891 | 0.3112 |
RP3β | 0.3511 | 0.2980 | 0.3892 | 0.3103 |
CMN | 0.4195 | 0.3346 | 0.4953 | 0.3592 |
Our results
Method | HR@5 | NDCG@5 | HR@10 | NDCG@10 |
---|---|---|---|---|
TopPopular | 0.5486 | 0.4187 | 0.6678 | 0.4573 |
UserKNN | 0.4316 | 0.3663 | 0.4783 | 0.3815 |
ItemKNN | 0.4323 | 0.3610 | 0.4877 | 0.3790 |
P3α | 0.4026 | 0.3445 | 0.4412 | 0.3569 |
RP3β | 0.4026 | 0.3446 | 0.4412 | 0.3570 |
CMN |
Extension ConvMF : Results attempting to reproduce the paper by Donghyun Kim et al (One of the papers, the work by Ferrari could not reproduce).
Dataset:MovieLens1M
Method | RMSE |
---|---|
PMF | 0.8971 |
ConvMF | 0.8531 |
ConvMF+ | 0.8549 |
Our results
Method | RMSE |
---|---|
PMF | 0.8731 |
ConvMF | 0.8569 |
ConvMF+ | 0.8570 |
Dataset:MovieLens10M
Method | RMSE |
---|---|
PMF | 0.8311 |
ConvMF | 0.7958 |
ConvMF+ | 0.7958 |
Our results
Method | RMSE |
---|---|
PMF | 0.8668 |
ConvMF | 0.7889 |
ConvMF+ | 0.7863 |