Skip to content

venetheo/Reproducibility-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reproducibility-Project

This project is Group 45's take of the mandatory assignment part of the course "Deep Learning (CS4240)" from TU Delft's CS Masters' program.

  • Albert Solà Roca
  • Theodoros Veneti
  • Ronan Hochart

We opted to (try and) reproduce the results from Maurizio Ferrari Dacrema (https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation) who in his turn tried to reproduce the findings from a number of different research from major conferences (such as SIGIR, KNN, RecSys and WWW). Specifically, their work succeeded in reproducing 7 out of the 18 papers selected. We tried to also reproduce these 7 papers but also took a shot with the unreproduced ones, to see why they were deemed unreproducible.

MCREC : Results from the MCRec method presented at KDD '18.

Dataet:Movie-Lens100k

Method PREC@10 REC@10 NDCG@10
TopPopular 0.1907 0.1180 0.1361
UserKNN 0.2913 0.1802 0.2055
ItemKNN 0.3327 0.2199 0.2603
P3α 0.2137 0.1585 0.1838
RP3β 0.2357 0.1684 0.1923
MCRec 0.3077 0.2061 0.2363

Our results

Method PREC@10 REC@10 NDCG@10
TopPopular 0.1907 0.1180 0.2184
UserKNN 0.3370 0.2097 0.3917
ItemKNN 0.3373 0.2235 0.4065
P3α 0.3361 0.2200 0.4073
RP3β 0.3454 0.2230 0.4118
MCRec 0.3047 0.2046 0.3617

CVAE : Results from the CVAE method presented at KDD '18.

Dataset:CiteULike-a

Method REC@50 REC@100 REC@300
TopPopular 0.0044 0.0081 0.0258
UserKNN 0.0683 0.1016 0.1685
ItemKNN 0.0788 0.1153 0.1823
P3α 0.0788 0.1151 0.1784
RP3β 0.0811 0.1184 0.1799
ItemKNN-CFCBF 0.1837 0.2777 0.4486
CVAE 0.0772 0.1548 0.3602

Our results

Method REC@50 REC@100 REC@300
TopPopular 0.0040 0.0078 0.0258
UserKNN 0.0765 0.1166 0.2013
ItemKNN 0.0989 0.1440 0.2301
P3α 0.0907 0.1341 0.2206
RP3β 0.0964 0.1406 0.2240
ItemKNN-CFCBF 0.1905 0.2896 0.4740
CVAE 0.0818 0.1593 0.3742

NEUMF : Results from the NeuMF method presented at WWW '17.

Dataset:Pinterest

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1663 0.1065 0.2744 0.1412
UserKNN 0.7001 0.5033 0.8610 0.5557
ItemKNN 0.7100 0.5092 0.8744 0.5629
P3α 0.7008 0.5018 0.8667 0.5559
RP3β 0.7105 0.5116 0.8740 0.5650
NeuMF 0.7024 0.4983 0.8719 0.5536

Our results

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1665 0.1064 0.2740 0.1409
UserKNN 0.7042 0.5051 0.8656 0.5577
ItemKNN 0.7126 0.5118 0.8778 0.5656
P3α 0.7016 0.5018 0.8687 0.5563
RP3β 0.7139 0.5141 0.8775 0.5674
NeuMF 0.7046 0.4994 0.8766 0.5556

Dataset:MovieLens-1m

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.3043 0.2062 0.4531 0.2542
UserKNN 0.4916 0.3328 0.6705 0.3908
ItemKNN 0.4829 0.3328 0.6596 0.3900
P3α 0.4811 0.3331 0.6464 0.3867
RP3β 0.4922 0.3409 0.6715 0.3867
NeuMF 0.5486 0.3840 0.7120 0.4369
SLIM 0.5589 0.3961 0.7161 0.4470

Our results

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.3048 0.2064 0.4533 0.2542
UserKNN 0.4921 0.3319 0.6714 0.3899
ItemKNN 0.4914 0.3377 0.6624 0.3931
P3α 0.4687 0.3232 0.6430 0.3796
RP3β 0.4947 0.3418 0.6694 0.3985
NeuMF 0.5406 0.3807 0.7098 0.4356
SLIM 0.5560 0.3939 0.7136 0.4450

SPECTRALCF: Results from SpectralCF method presented at RecSys '18.

Dataset:MovieLens-1m

Method REC@20 MAP@20 REC@60 MAP@60 REC@100 MAP@100
TopPopular 0.1853 0.0576 0.3335 0.0659 0.4244 0.0696
UserKNN CF 0.2881 0.1106 0.4780 0.1238 0.5790 0.1290
ItemKNN CF 0.2819 0.1059 0.4712 0.1190 0.5737 0.1243
P^3α 0.2853 0.1051 0.4808 0.1195 0.5760 0.1248
RP^3β 0.2910 0.1088 0.4882 0.1233 0.5884 0.1288
SpectralCF 0.1843 0.0539 0.3274 0.0618 0.4254 0.0656

Our results

Method REC@20 MAP@20 REC@60 MAP@60 REC@100 MAP@100
TopPopular 0.1941 0.0611 0.3399 0.0693 0.4299 0.0729
UserKNN CF 0.3013 0.1219 0.4870 0.1349 0.5851 0.1400
ItemKNN CF 0.2972 0.1180 0.4864 0.1309 0.5847 0.1361
P^3α 0.3025 0.1174 0.4981 0.1316 0.5935 0.1371
RP^3β 0.3101 0.1225 0.5071 0.1369 0.6058 0.1424
SpectralCF 0.1619 0.0488 0.3132 0.0567 0.4037 0.0598

MVAE : Results from the Mult-VAE method presented at WWW '18.

Dataset:Netflix

Method REC@20 NDCG@20 REC@50 NDCG@50 REC@100 NDCG@100
TopPopular 0.0782 0.1643 0.1570
ItemKNN CF 0.2088 0.3386 0.3086
P^3α 0.1977 0.3346 0.2967
RP^3β 0.2196 0.3560 0.3246
SLIM 0.2551 0.2473 0.3995 0.3196 0.5289 0.3745
Mul-VAE 0.2626 0.2448 0.4138 0.3192 0.5476 0.3756

Our results

Method REC@20 NDCG@20 REC@50 NDCG@50 REC@100 NDCG@100
TopPopular 0.0782 0.1643 0.1570
ItemKNN CF 0.2088 0.3386 0.3086
P^3α 0.1977 0.3346 0.2967
RP^3β 0.2196 0.3560 0.3246
SLIM 0.2551 0.2473 0.3995 0.3196 0.5289 0.3745
Mul-VAE 0.2641 0.3163 0.4174 0.3417 0.5508 0.3829

CDL : Results from the CDL method presented at KDD '15.

Dataset:CiteULike-a

Method REC@50 REC@100 REC@300
TopPopular 0.0038 0.0073 0.0258
UserKNN 0.0685 0.1028 0.1710
ItemKNN 0.0846 0.1213 0.1861
P^3α 0.0718 0.1079 0.1777
RP^3β 0.0800 0.1167 0.1815
ItemKNN-CBF 0.2135 0.3038 0.4707
ItemKNN-CFCBF 0.1945 0.2896 0.4620
Mul-VAE 0.0543 0.1035 0.2627

CMN : Results from the CMN method presented at SIGIR '18.

Dataset:CiteUlike-a

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1803 0.1220 0.2783 0.1535
UserKNN 0.8213 0.7033 0.8935 0.7268
ItemKNN 0.8116 0.6939 0.8878 0.7187
P3α 0.8202 0.7061 0.8901 0.7289
RP3β 0.8226 0.7114 0.8941 0.7347
CMN 0.8069 0.6666 0.8910 0.6942

Our results

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1810 0.1226 0.2774 0.1537
UserKNN 0.8332 0.7148 0.8982 0.7361
ItemKNN 0.8209 0.6995 0.8910 0.7225
P3α 0.8280 0.7148 0.8959 0.7369
RP3β 0.8350 0.7255 0.9013 0.7472
CMN

Dataset:Pinterest

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1668 0.1066 0.2745 0.1411
UserKNN 0.6886 0.4936 0.8527 0.5470
ItemKNN 0.6966 0.4994 0.8647 0.5542
P3α 0.6871 0.4935 0.8449 0.5450
RP3β 0.7018 0.5041 0.8644 0.5571
CMN 0.6872 0.4883 0.8549 0.5430

Our results

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1665 0.1064 0.2740 0.1409
UserKNN 0.7045 0.5060 0.8670 0.5589
ItemKNN 0.7126 0.5118 0.8778 0.5656
P3α 0.7025 0.5041 0.8657 0.5574
RP3β 0.7160 0.5162 0.8795 0.5694
CMN

Dataset:Epinions

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.5429 0.4153 0.6644 0.4547
UserKNN 0.3506 0.2983 0.3922 0.3117
ItemKNN 0.3821 0.3165 0.4372 0.3343
P3α 0.3510 0.2989 0.3891 0.3112
RP3β 0.3511 0.2980 0.3892 0.3103
CMN 0.4195 0.3346 0.4953 0.3592

Our results

Method HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.5486 0.4187 0.6678 0.4573
UserKNN 0.4316 0.3663 0.4783 0.3815
ItemKNN 0.4323 0.3610 0.4877 0.3790
P3α 0.4026 0.3445 0.4412 0.3569
RP3β 0.4026 0.3446 0.4412 0.3570
CMN

Extension ConvMF : Results attempting to reproduce the paper by Donghyun Kim et al (One of the papers, the work by Ferrari could not reproduce).

Dataset:MovieLens1M

Method RMSE
PMF 0.8971
ConvMF 0.8531
ConvMF+ 0.8549

Our results

Method RMSE
PMF 0.8731
ConvMF 0.8569
ConvMF+ 0.8570

Dataset:MovieLens10M

Method RMSE
PMF 0.8311
ConvMF 0.7958
ConvMF+ 0.7958

Our results

Method RMSE
PMF 0.8668
ConvMF 0.7889
ConvMF+ 0.7863

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •