Skip to content

A PyTorch implementation of "WaveFlow: A Compact Flow-based Model for Raw Audio"

Notifications You must be signed in to change notification settings

timofeev1995/WaveFlow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WaveFlow : A Compact Flow-based Model for Raw Audio

This is an unofficial PyTorch implementation of a paper "WaveFlow : A Compact Flow-based Model for Raw Audio".

Currently WIP. The implementation details may not be faithful.

Requirements

PyTorch 1.1.0 or later (tested on 1.3.0) & python 3.6 & Librosa

Examples

Step 1. Download Dataset

Step 2. Preprocessing (Preparing Mel Spectrogram)

python preprocessing.py --in_dir /path/to/ljspeech/data/root --out_dir ./ljspeech_data

Step 3. Train the Model

python train.py --model_name waveflow_h8_r64 --n_height 8 --res_channels 64 --n_layer_per_cycle 1

python train.py --model_name waveflow_h64_r64 --n_height 64 --res_channels 64 --n_layer_per_cycle 5

python train.py --model_name waveflow_h32_r128 --n_height 32 --res_channels 128 --n_layer_per_cycle 3

Step 4. Synthesize

Specify --load_step and --num_samples that looks like:

python synthesize.py --model_name waveflow_h8_r64 --n_height 8 --res_channels 64 --n_layer_per_cycle 1 --load_step 100000 --num_samples 5

References

About

A PyTorch implementation of "WaveFlow: A Compact Flow-based Model for Raw Audio"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%