About Code release for "Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models" (ICLR 2025)
To train a model (e.g., DyDiff for Turbulence), run:
cd core; python train_turbulence_dydiff.py --config_file models/turbulence/dydiff_ema_cosine_ratio05_1st_mask_svd_lr1e-4.yaml
Note: Before running, we need to update the config file with the root
for data and the ckpt_path
for VAE model.
To sampling with the trained model, run:
cd core; python train_turbulence_dydiff.py --config_file models/turbulence/dydiff_ema_cosine_ratio05_1st_mask_svd_lr1e-4.yaml --resume ${model_ckpt} --test
This will generate samples in the logs
directory.
After generating samples, evaluate them using the following command:
python core/evaluation/evaluate_turbulence.py --model_output_root logs/turbulence/dydiff_ema_cosine_ratio05_1st_mask_svd_lr1e-4/output_for_evaluation --i3d_model_path ${pretrained_i3d_model}