Skip to content
This repository was archived by the owner on Jul 9, 2025. It is now read-only.
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ With Tensorflow Similarity you can train two main types of models:

1. **Self-supervised models**: Used to learn general data representations on unlabeled data to boost the accuracy of downstream tasks where you have few labels. For example, you can pre-train a model on a large number of unlabled images using one of the supported contrastive methods supported by TensorFlow Similarity, and then fine-tune it on a small labeled dataset to achieve higher accuracy. To get started training your own self-supervised model see this [notebook](examples/unsupervised_hello_world.ipynb).

2. **Similarity models**: Output embeddings that allow you to find and cluster similar examples such as images representing the same object within a large corpus of examples. For instance, as visible above, you can train a similarity model to find and cluster similar looking, unseen cat and dog images from the [Oxford IIIT Pet Dataset](https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet) while only training on a few of the dataset classes. To get started training your own similarity model see this [notebook](examples/supervised/visualization.ipynb).
2. **Similarity models**: Output embeddings that allow you to find and cluster similar examples such as images representing the same object within a large corpus of examples. For instance, as visible above, you can train a similarity model to find and cluster similar looking, unseen cat and dog images from the [Oxford IIIT Pet Dataset](https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet) while only training on a few of the dataset classes. To get started training your own similarity model see this [notebook](examples/visualization.ipynb).

## What's new

Expand Down