Skip to content

swagfin/OllamaTest

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAG Demo with Local Embeddings and Qdrant

This project demonstrates how to build a simple Retrieval-Augmented Generation (RAG) system using:

💡 Why this project?

The biggest challenge in RAG systems is text embedding — converting meaningful text into high-dimensional vectors for retrieval. While many solutions rely on cloud APIs or heavy frameworks like ONNX, this project demonstrates how to:

  • Use local embeddings with minimal setup
  • Achieve fast and accurate semantic search
  • Keep everything offline and privacy-preserving

⚙️ Technologies Used

Component Tool/Library
Embeddings SmartComponents.LocalEmbeddings
Vector DB Qdrant (running locally)
LLM Ollama (mistral:7b)
API Layer ASP.NET Core Web API

🧠 How It Works

[User Question]
     ↓
Local Embedder (Microsoft's smartcomponents)
     ↓
Qdrant Search (Vector DB)
     ↓
Top Document Retrieved
     ↓
Mistral via Ollama (LLM)
     ↓
Final Answer

Setup

  1. Clone the repo.
  2. Install Qdrant locally or run via Docker.
  3. Run Ollama with:
    ollama run mistral
  4. Launch the ASP.NET API project.

License

MIT License.

About

RAG Demo App with Local Embeddings and Qdrant

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages