Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 18 additions & 7 deletions onediff_comfy_nodes/modules/oneflow/hijack_samplers.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ def calc_cond_batch_of(orig_func, model, conds, x_in, timestep, model_options):
out_conds = []
out_counts = []
to_run = []

for i in range(len(conds)):
out_conds.append(torch.zeros_like(x_in))
out_counts.append(torch.ones_like(x_in) * 1e-37)
Expand All @@ -40,6 +40,7 @@ def calc_cond_batch_of(orig_func, model, conds, x_in, timestep, model_options):
to_batch_temp.reverse()
# to_batch = to_batch_temp[:1]
to_batch = to_batch_temp

# free_memory = model_management.get_free_memory(x_in.device)
# for i in range(1, len(to_batch_temp) + 1):
# batch_amount = to_batch_temp[:len(to_batch_temp)//i]
Expand Down Expand Up @@ -93,27 +94,37 @@ def calc_cond_batch_of(orig_func, model, conds, x_in, timestep, model_options):
transformer_options["cond_or_uncond"] = cond_or_uncond[:]

diff_model = model.diffusion_model

if create_patch_executor(PatchType.CachedCrossAttentionPatch).check_patch(diff_model):
transformer_options["sigmas"] = timestep[0].item()
patch_executor = create_patch_executor(PatchType.UNetExtraInputOptions)
transformer_options["_attn2"] = patch_executor.get_patch(diff_model)["attn2"]
else:
transformer_options["sigmas"] = timestep
# transformer_options["sigmas"] = timestep


c['transformer_options'] = transformer_options

if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
else:
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)


for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
out_conds[cond_index][:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_counts[cond_index][:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]

a = area[o]
if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]

for i in range(len(out_conds)):
out_conds[i] /= out_counts[i]

Expand Down