Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 60 additions & 41 deletions pyquil/simulation/matrices.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,39 +118,45 @@

import numpy as np

I = np.array([[1.0, 0.0], [0.0, 1.0]]) # noqa: E741
I = np.array([[1.0, 0.0], [0.0, 1.0]], dtype=np.complex128) # noqa: E741

X = np.array([[0.0, 1.0], [1.0, 0.0]])
X = np.array([[0.0, 1.0], [1.0, 0.0]], dtype=np.complex128)

Y = np.array([[0.0, 0.0 - 1.0j], [0.0 + 1.0j, 0.0]])
Y = np.array([[0.0, 0.0 - 1.0j], [0.0 + 1.0j, 0.0]], dtype=np.complex128)

Z = np.array([[1.0, 0.0], [0.0, -1.0]])
Z = np.array([[1.0, 0.0], [0.0, -1.0]], dtype=np.complex128)

H = (1.0 / np.sqrt(2.0)) * np.array([[1.0, 1.0], [1.0, -1.0]])
H = (1.0 / np.sqrt(2.0)) * np.array([[1.0, 1.0], [1.0, -1.0]], dtype=np.complex128)

S = np.array([[1.0, 0.0], [0.0, 1.0j]])
S = np.array([[1.0, 0.0], [0.0, 1.0j]], dtype=np.complex128)

T = np.array([[1.0, 0.0], [0.0, cmath.exp(1.0j * np.pi / 4.0)]])
T = np.array([[1.0, 0.0], [0.0, cmath.exp(1.0j * np.pi / 4.0)]], dtype=np.complex128)


def PHASE(phi: float) -> np.ndarray:
return np.array([[1.0, 0.0], [0.0, np.exp(1j * phi)]])
return np.array([[1.0, 0.0], [0.0, np.exp(1j * phi)]], dtype=np.complex128)


def RX(phi: float) -> np.ndarray:
return np.array([[np.cos(phi / 2.0), -1j * np.sin(phi / 2.0)], [-1j * np.sin(phi / 2.0), np.cos(phi / 2.0)]])
return np.array(
[[np.cos(phi / 2.0), -1j * np.sin(phi / 2.0)], [-1j * np.sin(phi / 2.0), np.cos(phi / 2.0)]],
dtype=np.complex128,
)


def RY(phi: float) -> np.ndarray:
return np.array([[np.cos(phi / 2.0), -np.sin(phi / 2.0)], [np.sin(phi / 2.0), np.cos(phi / 2.0)]])
return np.array(
[[np.cos(phi / 2.0), -np.sin(phi / 2.0)], [np.sin(phi / 2.0), np.cos(phi / 2.0)]], dtype=np.complex128
)


def RZ(phi: float) -> np.ndarray:
return np.array(
[
[np.cos(phi / 2.0) - 1j * np.sin(phi / 2.0), 0],
[0, np.cos(phi / 2.0) + 1j * np.sin(phi / 2.0)],
]
],
dtype=np.complex128,
)


Expand All @@ -159,13 +165,14 @@ def U(theta: float, phi: float, lam: float) -> np.ndarray:
[
[np.cos(theta / 2.0), -1 * np.exp(1j * lam) * np.sin(theta / 2.0)],
[np.exp(1j * phi) * np.sin(theta / 2.0), np.exp(1j * (phi + lam)) * np.cos(theta / 2.0)],
]
],
dtype=np.complex128,
)


CZ = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]])
CZ = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]], dtype=np.complex128)

CNOT = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]])
CNOT = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]], dtype=np.complex128)

CCNOT = np.array(
[
Expand All @@ -177,24 +184,25 @@ def U(theta: float, phi: float, lam: float) -> np.ndarray:
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0],
]
],
dtype=np.complex128,
)


def CPHASE00(phi: float) -> np.ndarray:
return np.diag([np.exp(1j * phi), 1.0, 1.0, 1.0])
return np.diag([np.exp(1j * phi), 1.0, 1.0, 1.0]).astype(np.complex128)


def CPHASE01(phi: float) -> np.ndarray:
return np.diag([1.0, np.exp(1j * phi), 1.0, 1.0])
return np.diag([1.0, np.exp(1j * phi), 1.0, 1.0]).astype(np.complex128)


def CPHASE10(phi: float) -> np.ndarray:
return np.diag([1.0, 1.0, np.exp(1j * phi), 1.0])
return np.diag([1.0, 1.0, np.exp(1j * phi), 1.0]).astype(np.complex128)


def CPHASE(phi: float) -> np.ndarray:
return np.diag([1.0, 1.0, 1.0, np.exp(1j * phi)])
return np.diag([1.0, 1.0, 1.0, np.exp(1j * phi)]).astype(np.complex128)


SWAP = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
Expand All @@ -209,14 +217,17 @@ def CPHASE(phi: float) -> np.ndarray:
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
]
],
dtype=np.complex128,
)

ISWAP = np.array([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]])
ISWAP = np.array([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]], dtype=np.complex128)


def PSWAP(phi: float) -> np.ndarray:
return np.array([[1, 0, 0, 0], [0, 0, np.exp(1j * phi), 0], [0, np.exp(1j * phi), 0, 0], [0, 0, 0, 1]])
return np.array(
[[1, 0, 0, 0], [0, 0, np.exp(1j * phi), 0], [0, np.exp(1j * phi), 0, 0], [0, 0, 0, 1]], dtype=np.complex128
)


def XY(phi: float) -> np.ndarray:
Expand All @@ -226,7 +237,8 @@ def XY(phi: float) -> np.ndarray:
[0, np.cos(phi / 2), 1j * np.sin(phi / 2), 0],
[0, 1j * np.sin(phi / 2), np.cos(phi / 2), 0],
[0, 0, 0, 1],
]
],
dtype=np.complex128,
)


Expand All @@ -237,7 +249,8 @@ def FSIM(theta: float, phi: float) -> np.ndarray:
[0, np.cos(theta / 2), 1j * np.sin(theta / 2), 0],
[0, 1j * np.sin(theta / 2), np.cos(theta / 2), 0],
[0, 0, 0, np.exp(1j * phi)],
]
],
dtype=np.complex128,
)


Expand All @@ -258,7 +271,8 @@ def PHASEDFSIM(theta: float, zeta: float, chi: float, gamma: float, phi: float)
0,
],
[0, 0, 0, np.exp(1j * phi - 2j * gamma)],
]
],
dtype=np.complex128,
)


Expand All @@ -269,7 +283,8 @@ def RZZ(phi: float) -> np.ndarray:
[0, np.exp(+1j * phi / 2), 0, 0],
[0, 0, np.exp(+1j * phi / 2), 0],
[0, 0, 0, np.exp(-1j * phi / 2)],
]
],
dtype=np.complex128,
)


Expand All @@ -280,7 +295,8 @@ def RXX(phi: float) -> np.ndarray:
[0, np.cos(phi / 2), -1j * np.sin(phi / 2), 0],
[0, -1j * np.sin(phi / 2), np.cos(phi / 2), 0],
[-1j * np.sin(phi / 2), 0, 0, np.cos(phi / 2)],
]
],
dtype=np.complex128,
)


Expand All @@ -291,7 +307,8 @@ def RYY(phi: float) -> np.ndarray:
[0, np.cos(phi / 2), -1j * np.sin(phi / 2), 0],
[0, -1j * np.sin(phi / 2), np.cos(phi / 2), 0],
[+1j * np.sin(phi / 2), 0, 0, np.cos(phi / 2)],
]
],
dtype=np.complex128,
)


Expand All @@ -301,13 +318,14 @@ def RYY(phi: float) -> np.ndarray:
[0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0],
[0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0],
[0, 0, 0, 1],
]
],
dtype=np.complex128,
)

# Utility gates for internal QVM use
P0 = np.array([[1, 0], [0, 0]])
P0 = np.array([[1, 0], [0, 0]], dtype=np.complex128)

P1 = np.array([[0, 0], [0, 1]])
P1 = np.array([[0, 0], [0, 1]], dtype=np.complex128)


# Specialized useful gates; not officially in standard gate set
Expand All @@ -316,7 +334,8 @@ def BARENCO(alpha: float, phi: float, theta: float) -> np.ndarray:
[
[np.exp(1j * phi) * np.cos(theta), -1j * np.exp(1j * (alpha - phi)) * np.sin(theta)],
[-1j * np.exp(1j * (alpha + phi)) * np.sin(theta), np.exp(1j * alpha) * np.cos(theta)],
]
],
dtype=np.complex128,
)
return np.kron(P0, np.eye(2)) + np.kron(P1, lower_unitary)

Expand Down Expand Up @@ -357,8 +376,8 @@ def BARENCO(alpha: float, phi: float, theta: float) -> np.ndarray:

def relaxation_operators(p: float) -> tuple[np.ndarray, np.ndarray]:
"""Return the amplitude damping Kraus operators."""
k0 = np.array([[1.0, 0.0], [0.0, np.sqrt(1 - p)]])
k1 = np.array([[0.0, np.sqrt(p)], [0.0, 0.0]])
k0 = np.array([[1.0, 0.0], [0.0, np.sqrt(1 - p)]], dtype=np.complex128)
k1 = np.array([[0.0, np.sqrt(p)], [0.0, 0.0]], dtype=np.complex128)
return k0, k1


Expand Down Expand Up @@ -408,10 +427,10 @@ def bitphase_flip_operators(p: float) -> tuple[np.ndarray, np.ndarray]:
"bitphase_flip": bitphase_flip_operators,
}

SIC0 = np.array([1, 0])
SIC1 = np.array([1, np.sqrt(2)]) / np.sqrt(3)
SIC2 = np.array([1, np.exp(-np.pi * 2j / 3) * np.sqrt(2)]) / np.sqrt(3)
SIC3 = np.array([1, np.exp(np.pi * 2j / 3) * np.sqrt(2)]) / np.sqrt(3)
SIC0 = np.array([1, 0], dtype=np.complex128)
SIC1 = np.array([1, np.sqrt(2)], dtype=np.complex128) / np.sqrt(3)
SIC2 = np.array([1, np.exp(-np.pi * 2j / 3) * np.sqrt(2)], dtype=np.complex128) / np.sqrt(3)
SIC3 = np.array([1, np.exp(np.pi * 2j / 3) * np.sqrt(2)], dtype=np.complex128) / np.sqrt(3)
"""
The symmetric informationally complete POVMs for a qubit.

Expand All @@ -420,9 +439,9 @@ def bitphase_flip_operators(p: float) -> tuple[np.ndarray, np.ndarray]:
"""

STATES = {
"X": [np.array([1, 1]) / np.sqrt(2), np.array([1, -1]) / np.sqrt(2)],
"Y": [np.array([1, 1j]) / np.sqrt(2), np.array([1, -1j]) / np.sqrt(2)],
"Z": [np.array([1, 0]), np.array([0, 1])],
"X": [np.array([1, 1], dtype=np.complex128) / np.sqrt(2), np.array([1, -1], dtype=np.complex128) / np.sqrt(2)],
"Y": [np.array([1, 1j], dtype=np.complex128) / np.sqrt(2), np.array([1, -1j], dtype=np.complex128) / np.sqrt(2)],
"Z": [np.array([1, 0], dtype=np.complex128), np.array([0, 1], dtype=np.complex128)],
"SIC": [SIC0, SIC1, SIC2, SIC3],
}

Expand Down
Loading