Accelerating and Scaling Python for HPC # Exercise Link Solution 1 NumPy Intro: ndarray Basics 2 NumPy Linear Algebra: SVD Reconstruction 3 NumPy to CuPy: ndarray Basics 4 NumPy to CuPy: SVD Reconstruction 5 Memory Spaces: Power Iteration 6 Asynchrony: Power Iteration 7 Kernel Authoring: Copy 8 MPI 9.1 nvmath-python: Interoperability with CPU and GPU tensor libraries 9.2 nvmath-python: Kernel fusion 9.3 nvmath-python: stateful APIs: Amortizing task preparation costs 9.4 nvmath-python: scaling to many GPUs