Fourfouris Ioannis
Korovesis Panagiotis
Myrto Potamiti
For an analytical report of our work please look at Report/Sign_Language_Detection_Report.pdf
To create the virtual environment and download the dataset execute the following command:
bash setup.shThe structure of the project can be seen bellow
├── README.md
├── Report
│ ├── Sign Language Detection_Presentation.pptx
│ ├── Sign_Language_Detection_Report.pdf
│ └── Sign_Language_Image_Detection_Poster.pptx
├── requirements.txt
├── setup.sh
├── sign-language-image-detection-deliverables.zip
└── src
├── ViT
│ ├── 27-class-asl-numpy-dataset.ipynb
│ ├── ASL-dataset.ipynb
│ ├── ASL_test_dataset_cache.pkl
│ ├── ViT_Trainer.py
│ ├── azSL-dataset.ipynb
│ ├── benghali-dataset.ipynb
│ ├── hagrid-dataset-gesture-dataset.ipynb
│ ├── kenyan-dataset.ipynb
│ └── post_processing.ipynb
├── nn_and_cnn
│ ├── images
│ │ ├── pytorch_conv2d.ipynb
│ │ ├── pytorch_data_loader.ipynb
│ │ └── pytorch_flatten.ipynb
│ └── numpy
│ ├── pytorch_conv2d_for_numpy.ipynb
│ ├── pytorch_data_loader_for_numpy.ipynb
│ └── pytorch_flatten_for_numpy.ipynb
├── transfer_learning
│ ├── american_sign_language_transfer_learning.ipynb
│ ├── azerbaijan_sign_language_transfer_learning.ipynb
│ ├── bengali_sign_language_transfer_learning.ipynb
│ ├── hagrid_10_transfer_learning.ipynb
│ ├── hagrid_transfer_learning.ipynb
│ ├── kenyan_sign_language_transfer_learning.ipynb
│ ├── numpy-dataset-transfer-learning.ipynb
│ ├── plot_results.ipynb
│ ├── plots
│ │ └── transfer_learning_accuracies.png
│ └── sing_language_gesture_transfer_learning.ipynb
└── utils
├── __init__.py
├── hagrid_subset_generator.ipynb
├── keras_dataset_utils.py
└── numpy_dataset_utils.py