Skip to content

Conversation

3gx
Copy link

@3gx 3gx commented Aug 29, 2024

  • I am not making a trivial change, such as fixing a typo in a comment.

  • I have written a PR description following these
    rules.

     The BlockedToMMA pass creates a layout with kWidth=4 when one operand is
     i8. However, the TritonGPU to LLVM lowering pass does not support
     lowering f32 with kWidth=4, which is the other operand, causing a
     segmentation fault.
    
     To work around this, if the operands' minBitWidth is 8 and maxBitWidth
     is 32, we use a minBitWidth of 16 instead of 8, creating a layout with
     kWidth=2 for both i8 and f32 operands.
    
    
  • I have run pre-commit run --from-ref origin/main --to-ref HEAD.

  • Select one of the following.

    • I have added tests.
      • /python/test for end-to-end tests
  • Select one of the following.

    • I have not added any lit tests.

Copy link

google-cla bot commented Aug 29, 2024

Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).

View this failed invocation of the CLA check for more information.

For the most up to date status, view the checks section at the bottom of the pull request.

@3gx
Copy link
Author

3gx commented Aug 30, 2024

I signed CLA.

@gflegar gflegar requested review from Moerafaat and chsigg September 3, 2024 17:46
@Moerafaat
Copy link
Member

This change, as mentioned in the title, would only work-around the issue but not fix it. Effectively what this is doing is it removes mixed-precision behavior for any matmuls with s8. Also the current change would regress s8 x . The ideal way we would hope to handle the issue is to fix the limitations of Triton during its lowering to LLVM, and still allow proper mixed-precision mma to happen.

@3gx
Copy link
Author

3gx commented Sep 5, 2024

Could you elaborate on what you mean by "removes mixed-precision behavior for any matmuls with s8"? I ask because the lowered code contains a cast from i8 to f32 before feeding data to the tf32 mma op, which is necessary since the other operand is already f32. Could you also clarify what you mean by "the current change would regress s8 x "? Perhaps you could provide an example to illustrate this point? Thank you.

@Moerafaat
Copy link
Member

Moerafaat commented Sep 9, 2024

My apologies for replying late.

Regarding s8 x : We can consider the example of s8 x f16:
This change will cause the "kwidth" attribute (can be inspected in MLIR in the AccelerateMatmul pass if you dump the MLIR) to be different before and after the change. The value before will be equal to 4, while after it will be equal to 2. This will affect how the data is loaded.
I have attached the LLVM IR before and after the change for you to inspect given the HLO below.

HloModule m

ENTRY e {
  p0 = s8[16,32] parameter(0)
  p0c = bf16[16,32] convert(p0)
  p1 = bf16[32,8] parameter(1)
  ROOT _ = bf16[16,8] dot(p0c, p1),
    lhs_contracting_dims={1}, rhs_contracting_dims={0}
})

I haven't looked deeply into the performance impact, but it is clear that the change is not local.
llvm-after-change.txt
llvm-before-change.txt

As you can see the change will impact other use-cases. I'm not sure whether what the performance impact is (would be nice if you profile it). The constraints could be tighter to only match on s8 x f32 combinations, but that would still be working around the issue.
I hope this explains it a bit more.

The BlockedToMMA pass creates a layout with kWidth=4 when one operand is
i8. However, the TritonGPU to LLVM lowering pass does not support
lowering f32 with kWidth=4, which is the other operand, causing a
segmentation fault.

To work around this, if the operands' minBitWidth is 8 and maxBitWidth
is 32, we use a minBitWidth of 16 instead of 8, creating a layout with
kWidth=2 for both i8 and f32 operands.
@3gx 3gx force-pushed the xla/egx/bug-2853-v1 branch from 3ff8088 to b313a8b Compare September 10, 2024 13:25
@3gx 3gx changed the title Workaround for matmul kernel crash with i8 operand Workaround for matmul kernel crash with i8xf32 operands. Sep 10, 2024
@3gx
Copy link
Author

3gx commented Sep 10, 2024

Thank you for the details. I think I understand the issue with the proposed workaround. I have updated this MR with changes that should not affect other mixed-precision matrix multiplications. I verified that the i8xf16 kWidth remains 4 with this workaround.

The issue stems from the LLVM lowering pass not supporting f32 with kWidth=4 when lowering for Ampere tensor cores. I am not familiar with Ampere tensor cores and cannot estimate the effort required to fix the issue in the lowering pass.

@Moerafaat
Copy link
Member

Thank you for the modifications. Currently there are discussions whether we would proceed with a work-around or not. I will get back to you once there is a decision.

@gflegar
Copy link
Member

gflegar commented Oct 17, 2024

Unfortunately, a workaround is not something we can accept for this issue, and would need a proper fix here.

We already have a different workaround internally, and the performance benefits we would gain from this do not outweigh the cost of maintaining a patch on top of upstream.

gflegar added a commit that referenced this pull request Aug 12, 2025
…lang#7796)

Getting a crash internally when running `09-persistent-matmul.py`
tutorial, and ASAN reports the following:

```
==7854==ERROR: AddressSanitizer: heap-use-after-free on address 0x7c884c02e800 at pc 0x557f344112d9 bp 0x7b35908a1840 sp 0x7b35908a1838
READ of size 8 at 0x7c884c02e800 thread T1128
    #0 0x557f344112d8 in getNextOperandUsingThisValue third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h:43:58
    #1 0x557f344112d8 in operator++ third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h:322:39
    #2 0x557f344112d8 in mlir::ResultRange::UseIterator::operator++() third_party/llvm/llvm-project/mlir/lib/IR/OperationSupport.cpp:613:5
    #3 0x557f2ab70625 in mlir::lowerTokenOperations(mlir::Operation*, int, int) third_party/triton/third_party/nvidia/hopper/lib/Transforms/WarpSpecialization/WSLowerToken.cpp:269:27
    #4 0x557f2ab70de8 in mlir::doTokenLowering(mlir::triton::FuncOp&, unsigned int) third_party/triton/third_party/nvidia/hopper/lib/Transforms/WarpSpecialization/WSLowerToken.cpp:321:3
    #5 0x557f2ab2d018 in mlir::NVGPUWarpSpecializationPass::runOnFuncOp(mlir::triton::FuncOp) third_party/triton/third_party/nvidia/hopper/lib/Transforms/WarpSpecialization.cpp:99:5
    #6 0x557f2ab2c5d6 in operator() third_party/triton/third_party/nvidia/hopper/lib/Transforms/WarpSpecialization.cpp:108:55
    #7 0x557f2ab2c5d6 in operator() third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:304:7
    #8 0x557f2ab2c5d6 in void llvm::function_ref<void (mlir::Operation*)>::callback_fn<std::__u::enable_if<!llvm::is_one_of<mlir::triton::FuncOp, mlir::Operation*, mlir::Region*, mlir::Block*>::value && std::is_same<void, void>::value, void>::type mlir::detail::walk<(mlir::WalkOrder)1, mlir::ForwardIterator, mlir::NVGPUWarpSpecializationPass::runOnOperation()::'lambda'(mlir::triton::FuncOp), mlir::triton::FuncOp, void>(mlir::Operation*, mlir::NVGPUWarpSpecializationPass::runOnOperation()::'lambda'(mlir::triton::FuncOp)&&)::'lambda'(mlir::Operation*)>(long, mlir::Operation*) third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:46:12
    #9 0x557f2820ce45 in operator() third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:69:12
    #10 0x557f2820ce45 in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:152:5
    #11 0x557f2820ce2c in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:147:9
    #12 0x557f2ab2c0c9 in walk<(mlir::WalkOrder)1, mlir::ForwardIterator, (lambda at third_party/triton/third_party/nvidia/hopper/lib/Transforms/WarpSpecialization.cpp:108:26), mlir::triton::FuncOp, void> third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:306:10
    #13 0x557f2ab2c0c9 in walk<(mlir::WalkOrder)1, mlir::ForwardIterator, (lambda at third_party/triton/third_party/nvidia/hopper/lib/Transforms/WarpSpecialization.cpp:108:26), void> third_party/llvm/llvm-project/mlir/include/mlir/IR/Operation.h:798:12
    #14 0x557f2ab2c0c9 in mlir::NVGPUWarpSpecializationPass::runOnOperation() third_party/triton/third_party/nvidia/hopper/lib/Transforms/WarpSpecialization.cpp:108:21
...
```

The problem seems to be that we are iterating through uses, and then
removing some of them inside the loop, which invalidates the iterator.
chsigg pushed a commit that referenced this pull request Aug 26, 2025
…leaveTMem.cpp (triton-lang#7924)

`TritonNvidiaGPU/interleave_tmem.mlir` fails under address sanitizer. 

The `ConstantIntOp` operations were created without attachment to any
block in http://github.com/triton-lang/triton/pull/7622, which caused a
memory leak. This change addresses the problem by adding an insertion
point.

<details open>
  <summary>Full log</summary>

=================================================================
==3831==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 576 byte(s) in 6 object(s) allocated from:
#0 0x55c3eca39164 in malloc
[third_party/llvm/llvm-project/compiler-rt/lib/asan/asan_malloc_linux.cpp:67](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/compiler-rt/lib/asan/asan_malloc_linux.cpp?l=67&ws=tap-presubmit-server/421956858&snapshot=2):3
#1 0x55c3f176afb3 in mlir::Operation::create(mlir::Location,
mlir::OperationName, mlir::TypeRange, mlir::ValueRange,
mlir::DictionaryAttr, mlir::OpaqueProperties, mlir::BlockRange, unsigned
int)
[third_party/llvm/llvm-project/mlir/lib/IR/Operation.cpp:113](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/IR/Operation.cpp?l=113&ws=tap-presubmit-server/421956858&snapshot=2):46
#2 0x55c3f176a90c in create
[third_party/llvm/llvm-project/mlir/lib/IR/Operation.cpp:74](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/IR/Operation.cpp?l=74&ws=tap-presubmit-server/421956858&snapshot=2):10
#3 0x55c3f176a90c in mlir::Operation::create(mlir::Location,
mlir::OperationName, mlir::TypeRange, mlir::ValueRange,
mlir::NamedAttrList&&, mlir::OpaqueProperties, mlir::BlockRange,
mlir::RegionRange)
[third_party/llvm/llvm-project/mlir/lib/IR/Operation.cpp:57](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/IR/Operation.cpp?l=57&ws=tap-presubmit-server/421956858&snapshot=2):7
#4 0x55c3f176a61b in mlir::Operation::create(mlir::OperationState
const&)
[third_party/llvm/llvm-project/mlir/lib/IR/Operation.cpp:35](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/IR/Operation.cpp?l=35&ws=tap-presubmit-server/421956858&snapshot=2):7
#5 0x55c3f1678a78 in mlir::OpBuilder::create(mlir::OperationState
const&)
[third_party/llvm/llvm-project/mlir/lib/IR/Builders.cpp:453](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/IR/Builders.cpp?l=453&ws=tap-presubmit-server/421956858&snapshot=2):17
#6 0x55c3ecf3668f in mlir::arith::ConstantIntOp
mlir::OpBuilder::create<mlir::arith::ConstantIntOp, int,
int>(mlir::Location, int&&, int&&)
[third_party/llvm/llvm-project/mlir/include/mlir/IR/Builders.h:507](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/include/mlir/IR/Builders.h?l=507&ws=tap-presubmit-server/421956858&snapshot=2):16
#7 0x55c3eefa690a in findBufferAccessMemdescSubview
[third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp:75](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp?l=75&ws=tap-presubmit-server/421956858&snapshot=2):33
#8 0x55c3eefa690a in mlir::triton::nvidia_gpu::(anonymous
namespace)::findBufferAccess(mlir::Value)
[third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp:151](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp?l=151&ws=tap-presubmit-server/421956858&snapshot=2):12
#9 0x55c3eefa70e7 in mlir::triton::nvidia_gpu::(anonymous
namespace)::findBufferAccess(mlir::Value)
[third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp:156](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp?l=156&ws=tap-presubmit-server/421956858&snapshot=2):34
#10 0x55c3eefa4c0c in tmemMayAlias
[third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp:173](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp?l=173&ws=tap-presubmit-server/421956858&snapshot=2):28
#11 0x55c3eefa4c0c in sinkOps
[third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp:227](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp?l=227&ws=tap-presubmit-server/421956858&snapshot=2):36
#12 0x55c3eefa4c0c in trySinkOp
[third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp:253](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp?l=253&ws=tap-presubmit-server/421956858&snapshot=2):10
#13 0x55c3eefa4c0c in
mlir::triton::nvidia_gpu::TritonNvidiaGPUInterleaveTMemPass::runOnOperation()
[third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp:275](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonNvidiaGPU/Transforms/InterleaveTMem.cpp?l=275&ws=tap-presubmit-server/421956858&snapshot=2):14
#14 0x55c3f1560ad1 in operator()
[third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp:553](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp?l=553&ws=tap-presubmit-server/421956858&snapshot=2):17
#15 0x55c3f1560ad1 in void llvm::function_ref<void
()>::callback_fn<mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*,
mlir::Operation*, mlir::AnalysisManager, bool, unsigned int)::$_1>(long)
[third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:46](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h?l=46&ws=tap-presubmit-server/421956858&snapshot=2):12
#16 0x55c3f1559920 in operator()
[third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:69](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h?l=69&ws=tap-presubmit-server/421956858&snapshot=2):12
#17 0x55c3f1559920 in executeAction<mlir::PassExecutionAction,
mlir::Pass &>
[third_party/llvm/llvm-project/mlir/include/mlir/IR/MLIRContext.h:280](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/include/mlir/IR/MLIRContext.h?l=280&ws=tap-presubmit-server/421956858&snapshot=2):7
#18 0x55c3f1559920 in mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*,
mlir::Operation*, mlir::AnalysisManager, bool, unsigned int)
[third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp:547](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp?l=547&ws=tap-presubmit-server/421956858&snapshot=2):21
#19 0x55c3f155d46f in runPipeline
[third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp:619](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp?l=619&ws=tap-presubmit-server/421956858&snapshot=2):16
#20 0x55c3f155d46f in mlir::PassManager::runPasses(mlir::Operation*,
mlir::AnalysisManager)
[third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp:933](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp?l=933&ws=tap-presubmit-server/421956858&snapshot=2):10
#21 0x55c3f155d15b in mlir::PassManager::run(mlir::Operation*)
[third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp:913](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Pass/Pass.cpp?l=913&ws=tap-presubmit-server/421956858&snapshot=2):60
#22 0x55c3ed0a8b20 in performActions(llvm::raw_ostream&,
std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::MLIRContext*,
mlir::MlirOptMainConfig const&)
[third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:477](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp?l=477&ws=tap-presubmit-server/421956858&snapshot=2):17
#23 0x55c3ed0a8363 in processBuffer
[third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:553](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp?l=553&ws=tap-presubmit-server/421956858&snapshot=2):12
#24 0x55c3ed0a8363 in operator()
[third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:642](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp?l=642&ws=tap-presubmit-server/421956858&snapshot=2):12
#25 0x55c3ed0a8363 in llvm::LogicalResult
llvm::function_ref<llvm::LogicalResult
(std::__u::unique_ptr<llvm::MemoryBuffer,
std::__u::default_delete<llvm::MemoryBuffer>>, llvm::MemoryBufferRef
const&,
llvm::raw_ostream&)>::callback_fn<mlir::MlirOptMain(llvm::raw_ostream&,
std::__u::unique_ptr<llvm::MemoryBuffer,
std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&,
mlir::MlirOptMainConfig const&)::$_0>(long,
std::__u::unique_ptr<llvm::MemoryBuffer,
std::__u::default_delete<llvm::MemoryBuffer>>, llvm::MemoryBufferRef
const&, llvm::raw_ostream&)
[third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:46](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h?l=46&ws=tap-presubmit-server/421956858&snapshot=2):12
triton-lang#26 0x55c3f17bd34f in operator()
[third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:69](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h?l=69&ws=tap-presubmit-server/421956858&snapshot=2):12
triton-lang#27 0x55c3f17bd34f in
mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer,
std::__u::default_delete<llvm::MemoryBuffer>>,
llvm::function_ref<llvm::LogicalResult
(std::__u::unique_ptr<llvm::MemoryBuffer,
std::__u::default_delete<llvm::MemoryBuffer>>, llvm::MemoryBufferRef
const&, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef,
llvm::StringRef)
[third_party/llvm/llvm-project/mlir/lib/Support/ToolUtilities.cpp:30](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Support/ToolUtilities.cpp?l=30&ws=tap-presubmit-server/421956858&snapshot=2):12
triton-lang#28 0x55c3ed09d0c6 in mlir::MlirOptMain(llvm::raw_ostream&,
std::__u::unique_ptr<llvm::MemoryBuffer,
std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&,
mlir::MlirOptMainConfig const&)
[third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:647](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp?l=647&ws=tap-presubmit-server/421956858&snapshot=2):26
triton-lang#29 0x55c3ed09d67f in mlir::MlirOptMain(int, char**, llvm::StringRef,
llvm::StringRef, mlir::DialectRegistry&)
[third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:693](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp?l=693&ws=tap-presubmit-server/421956858&snapshot=2):14
triton-lang#30 0x55c3ed09dc59 in mlir::MlirOptMain(int, char**, llvm::StringRef,
mlir::DialectRegistry&)
[third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:709](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp?l=709&ws=tap-presubmit-server/421956858&snapshot=2):10
triton-lang#31 0x55c3eca74a70 in main
[third_party/triton/bin/triton-opt.cpp:14](https://cs.corp.google.com/piper///depot/google3/third_party/triton/bin/triton-opt.cpp?l=14&ws=tap-presubmit-server/421956858&snapshot=2):33
triton-lang#32 0x7f1fd58613d3 in __libc_start_main
(/usr/grte/v5/lib64/libc.so.6+0x613d3) (BuildId:
9a996398ce14a94560b0c642eb4f6e94)
triton-lang#33 0x55c3ec995aa9 in _start
/usr/grte/v5/debug-src/src/csu/../sysdeps/x86_64/start.S:120

</details>

---------

Co-authored-by: Thomas Raoux <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants