A framework to employ coverage-guided fuzzing to test Deep Learning APIs at scale.
- testharness: Contains the test harness for fuzzing.
bash build_docker.sh- Common Flags
--dll: Target DL library, Should be obne oftf,torch--version: Version of the DL library, currently supported versions are2.16and2.19(fuzz only) for tensorflow.--mode: Should be one offuzz,cov--num_parallel: Number of parallel experiments to run.
python3 -u run.py --dll tf --version 2.16 --mode fuzz Results are stored in _fuzz_result/ directory.
🚀 Want Faster? Try
python3 -u run.py --dll tf --version 2.16 --mode fuzz --num_parallel 40python3 -u run.py --dll tf --version 2.16 --mode fuzz --check_valid Example output:
Build Summary: Build status: 668/1452 TensorFlow APIs built successfully.
Results are stored in _fuzz_result/build_status directory.
python3 -u run.py --dll tf --version 2.16 --mode fuzz --time_budget 300This will set the time budget for each fuzzing run to 300 seconds. The default is 180 seconds.
python3 -u run.py --dll tf --version 2.16 --mode covResults are stored in _cov_result/ directory.