Skip to content

CCMusic, an open Chinese music database, integrates diverse datasets. It ensures data consistency via cleaning, label refinement and structure unification. A unified evaluation framework is used for benchmark evaluations, supporting classification and detection tasks.|CCMusic是一个开放的中文音乐数据库,整合了多样化数据集。通过数据清洗、标签优化和结构统一化确保数据一致性。使用统一评估框架进行基准评估,支持分类和检测任务。

License

Notifications You must be signed in to change notification settings

monetjoe/ccmusic_eval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Evaluation Framework for CCMusic Database Classification Tasks

License: MIT Python application hf ms arxiv tismir

Classify spectrograms by fine-tuned pre-trained CNN models.

Download

git clone [email protected]:monetjoe/ccmusic_eval.git
cd ccmusic_eval

Environment

conda create -n py311 python=3.11 -y
conda activate py311
pip install -r requirements.txt

Usage

python train.py --ds ccmusic-database/bel_canto --subset eval --data cqt --label singing_method --model squeezenet1_1 --wce True --mode 0

Help

Args Notes Options Type
--ds The dataset on ModelScope to be evaluated For examples: ccmusic-database/CNPM, ccmusic-database/bel_canto string
--subset The subset of the dataset For examples: default, eval string
--data Input data colum of the dataset For examples: mel, cqt, chroma string
--label Label colum of the dataset For examples: label, singing_method, gender string
--model Select a CV backbone to train Supported backbones string
--imgnet ImageNet version the backbone was pretrained on v1, v2 string
--mode Training mode ID 0=linear_probe, 1=full_finetune, 2=no_pretrain int
--bsz Batch size For examples: 1, 2, 4, 8, 16, 32, 64, 128..., default is 4 int
--eps Epoch number Default is 40 int
--wce Whether to use weighted cross entropy False, True bool

Fixed hyperparameters

Param Value Range
iteration 10 train
lr 0.001 optimizer
momentum 0.9 optimizer
optimizer SGD scheduler
mode min scheduler
factor 0.1 scheduler
patience 5 scheduler
verbose True scheduler
threshold lr scheduler
threshold_mode rel scheduler
cooldown 0 scheduler
min_lr 0 scheduler
eps 1e-08 scheduler

Cite

@article{Zhou-2025,
  author  = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
  title   = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
  journal = {Transactions of the International Society for Music Information Retrieval},
  volume  = {8},
  number  = {1},
  pages   = {22--38},
  month   = {Mar},
  year    = {2025},
  url     = {https://doi.org/10.5334/tismir.194},
  doi     = {10.5334/tismir.194}
}

About

CCMusic, an open Chinese music database, integrates diverse datasets. It ensures data consistency via cleaning, label refinement and structure unification. A unified evaluation framework is used for benchmark evaluations, supporting classification and detection tasks.|CCMusic是一个开放的中文音乐数据库,整合了多样化数据集。通过数据清洗、标签优化和结构统一化确保数据一致性。使用统一评估框架进行基准评估,支持分类和检测任务。

Topics

Resources

License

Stars

Watchers

Forks

Languages