Skip to content

Julia v1.1 update #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 62 additions & 27 deletions Pfaffian.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
# (file, filename, data) = imp.find_module("pfaffian", [path]);
# pfaffian = imp.load_module(name, file, filename, data)

function Householder(x::Vector{Float64})::Tuple{Vector{Float64}, Float64, Float64}
function Householder(x::Vector{Float64})::Tuple{Vector{Float64},Float64,Float64}
@assert length(x) > 0

sigma = dot(x[2:end], x[2:end])
Expand All @@ -29,13 +29,13 @@ end

Householder(x::Vector{Int}) = Householder(convert(Vector{Float64}, x))

function Householder(x::Vector{Complex128})::Tuple{Vector{Complex128}, Float64, Complex128}
function Householder(x::Vector{ComplexF64})::Tuple{Vector{ComplexF64},Float64,ComplexF64}
@assert length(x) > 1

sigma = dot(x[2:end], x[2:end])

if sigma == 0
return (zeros(Complex128, length(x)), 0., x[1])
return (zeros(ComplexF64, length(x)), 0., x[1])
else
norm_x = sqrt(abs2(x[1]) + sigma)
v = copy(x)
Expand All @@ -46,9 +46,12 @@ function Householder(x::Vector{Complex128})::Tuple{Vector{Complex128}, Float64,
end
end

function skew_tridiagonalize(A::Matrix{T}; overwrite_A=false, calc_Q=true) where {T <: Number}
function skew_tridiagonalize(
A::Matrix{T};
overwrite_A = false, calc_Q = true
) where {T<:Number}
@assert size(A)[1] == size(A)[2] > 0
@assert maximum(abs, A + A.') < 1e-12
@assert maximum(abs, A + A') < 1e-12

n = size(A)[1]

Expand Down Expand Up @@ -92,18 +95,25 @@ function skew_tridiagonalize(A::Matrix{T}; overwrite_A=false, calc_Q=true) where
end
end

function skew_tridiagonalize(A::Matrix{Int}; overwrite_A=false, calc_Q=true)
return skew_tridiagonalize(convert(Matrix{Float64}, A), overwrite_A=overwrite_A, calc_Q=calc_Q)
function skew_tridiagonalize(A::Matrix{Int}; overwrite_A = false, calc_Q = true)
return skew_tridiagonalize(
convert(Matrix{Float64}, A),
overwrite_A = overwrite_A,
calc_Q = calc_Q
)
end

function Pfaffian_LTL(A::Union{Matrix{Float64}, Matrix{Complex128}}; overwrite_A=false, skewsymtol=1e-6)::Union{Float64, Complex128}
function Pfaffian_LTL(
A::Union{Matrix{Float64},Matrix{ComplexF64}};
overwrite_A = false, skewsymtol = 1e-6
)::Union{Float64,ComplexF64}
@assert size(A)[1] == size(A)[2] > 0
@assert maximum(abs, A + A.') < skewsymtol
@assert maximum(abs, A + A') < skewsymtol

T = eltype(A)
n = size(A)[1]

if n%2 == 1
if n % 2 == 1
return T(0.)
end

Expand All @@ -114,10 +124,10 @@ function Pfaffian_LTL(A::Union{Matrix{Float64}, Matrix{Complex128}}; overwrite_A

pf_val = T(1.)

for k in 1:2:n-1
kp = k + indmax(abs.(A[k+1:end, k]))
for k in 1:2:n - 1
kp = k + argmax(abs.(A[k+1:end, k]))[1]

if kp != k+1
if kp != k + 1
temp = copy(A[k+1, k:end])
A[k+1, k:end] = @view(A[kp, k:end])
A[kp, k:end] = temp
Expand All @@ -135,9 +145,19 @@ function Pfaffian_LTL(A::Union{Matrix{Float64}, Matrix{Complex128}}; overwrite_A

pf_val *= A[k, k+1]

if k+2 <= n
BLAS.ger!(T(1.), tau, conj(@view(A[k+2:end, k+1])), @view(A[k+2:end, k+2:end]))
BLAS.ger!(T(-1.), @view(A[k+2:end, k+1]), conj(tau), @view(A[k+2:end, k+2:end]))
if k + 2 <= n
BLAS.ger!(
T(1.),
tau,
conj(@view(A[k+2:end, k+1])),
@view(A[k+2:end, k+2:end])
)
BLAS.ger!(
T(-1.),
@view(A[k+2:end, k+1]),
conj(tau),
@view(A[k+2:end, k+2:end])
)
end
else
return T(0.)
Expand All @@ -147,18 +167,25 @@ function Pfaffian_LTL(A::Union{Matrix{Float64}, Matrix{Complex128}}; overwrite_A
return pf_val
end

function Pfaffian_LTL(A::Matrix{Int}; overwrite_A=false, skewsymtol=1e-6)::Float64
return Pfaffian_LTL(convert(Matrix{Float64}, A), overwrite_A=overwrite_A, skewsymtol=skewsymtol)
function Pfaffian_LTL(A::Matrix{Int}; overwrite_A = false, skewsymtol = 1e-6)::Float64
return Pfaffian_LTL(
convert(Matrix{Float64}, A),
overwrite_A = overwrite_A,
skewsymtol = skewsymtol
)
end

function Pfaffian_Householder(A::Union{Matrix{Float64}, Matrix{Complex128}}; overwrite_A=false, skewsymtol=1e-6)::Union{Float64, Complex128}
function Pfaffian_Householder(
A::Union{Matrix{Float64},Matrix{ComplexF64}};
overwrite_A = false, skewsymtol = 1e-6
)::Union{Float64,ComplexF64}
@assert size(A)[1] == size(A)[2] > 0
@assert maximum(abs, A + A.') < skewsymtol
@assert maximum(abs, A + A') < skewsymtol

T = eltype(A)
n = size(A)[1]

if n%2 == 1
if n % 2 == 1
return T(0.)
end

Expand All @@ -183,7 +210,7 @@ function Pfaffian_Householder(A::Union{Matrix{Float64}, Matrix{Complex128}}; ove
if tau != 0
pf_val *= 1. - tau
end
if i%2 == 1
if i % 2 == 1
pf_val *= -alpha
end
end
Expand All @@ -193,13 +220,21 @@ function Pfaffian_Householder(A::Union{Matrix{Float64}, Matrix{Complex128}}; ove
return pf_val
end

function Pfaffian_Householder(A::Matrix{Int}; overwrite_A=false, skewsymtol=1e-6)::Float64
return Pfaffian_Householder(convert(Matrix{Float64}, A), overwrite_A=overwrite_A, skewsymtol=skewsymtol)
function Pfaffian_Householder(
A::Matrix{Int};
overwrite_A = false, skewsymtol = 1e-6
)::Float64
return Pfaffian_Householder(
convert(Matrix{Float64}, A),
overwrite_A = overwrite_A,
skewsymtol = skewsymtol
)
end

# default to LTL for speed
Pfaffian(A::Matrix; overwrite_A=false, skewsymtol=1e-6)::Union{Float64, Complex128} = Pfaffian_LTL(A, overwrite_A=overwrite_A, skewsymtol=skewsymtol)
# Pfaffian(A::Matrix; overwrite_A=false, skewsymtol=1e-6)::Union{Float64, Complex128} = Pfaffian_Householder(A, overwrite_A=overwrite_A, skewsymtol=skewsymtol)
Pfaffian(A::Matrix; overwrite_A = false, skewsymtol = 1e-6)::Union{Float64,ComplexF64} =
Pfaffian_LTL(A, overwrite_A = overwrite_A, skewsymtol = skewsymtol)
# Pfaffian(A::Matrix; overwrite_A=false, skewsymtol=1e-6)::Union{Float64, ComplexF64} = Pfaffian_Householder(A, overwrite_A=overwrite_A, skewsymtol=skewsymtol)

# Wimmer's version
# Pfaffian(A::Matrix; overwrite_A=false, skewsymtol=1e-6)::Union{Float64, Complex128} = pfaffian[:pfaffian](A, overwrite_a=overwrite_A, method="P")
# Pfaffian(A::Matrix; overwrite_A=false, skewsymtol=1e-6)::Union{Float64, ComplexF64} = pfaffian[:pfaffian](A, overwrite_a=overwrite_A, method="P")
30 changes: 15 additions & 15 deletions test-Pfaffian.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ using PyCall
@pyimport imp
path = dirname("pfapack/python/pfaffian.py")
name = basename("pfapack/python/pfaffian.py")
(file, filename, data) = imp.find_module("pfaffian", [path]);
(file, filename, data) = imp.find_module("pfaffian", [path])
pfaffian = imp.load_module(name, file, filename, data)

N = 100
Expand Down Expand Up @@ -39,15 +39,15 @@ T_w, Q_w = pfaffian[:skew_tridiagonalize](A)
println()

pf_ltl = Pfaffian_LTL(A)
pf_ltl_w = pfaffian[:pfaffian](A, method="P")
pf_ltl_w = pfaffian[:pfaffian](A, method = "P")

@show abs((pf_ltl - pf_ltl_w)/pf_ltl_w)
@show abs((pf_ltl - pf_ltl_w) / pf_ltl_w)
println()

pf_h = Pfaffian_Householder(A)
pf_h_w = pfaffian[:pfaffian](A, method="H")
pf_h_w = pfaffian[:pfaffian](A, method = "H")

@show abs((pf_h - pf_h_w)/pf_h_w)
@show abs((pf_h - pf_h_w) / pf_h_w)
println()

println()
Expand Down Expand Up @@ -75,22 +75,22 @@ T_w, Q_w = pfaffian[:skew_tridiagonalize](convert(Matrix{Float64}, A))
println()

pf_ltl = Pfaffian_LTL(A)
pf_ltl_w = pfaffian[:pfaffian](A, method="P")
pf_ltl_w = pfaffian[:pfaffian](A, method = "P")

@show abs((pf_ltl - pf_ltl_w)/pf_ltl_w)
@show abs((pf_ltl - pf_ltl_w) / pf_ltl_w)
println()

pf_h = Pfaffian_Householder(A)
pf_h_w = pfaffian[:pfaffian](A, method="H")
pf_h_w = pfaffian[:pfaffian](A, method = "H")

@show abs((pf_h - pf_h_w)/pf_h_w)
@show abs((pf_h - pf_h_w) / pf_h_w)
println()

println()
println("Testing complex methods:")
println()

x = rand(Complex128, N)
x = rand(ComplexF64, N)

v, tau, alpha = Householder(x)
v_w, tau_w, alpha_w = pfaffian[:householder_complex](x)
Expand All @@ -100,7 +100,7 @@ v_w, tau_w, alpha_w = pfaffian[:householder_complex](x)
@show abs(alpha - alpha_w)
println()

A = rand(Complex128, (N, N))
A = rand(ComplexF64, (N, N))
A = A - A.'

T, Q = skew_tridiagonalize(A)
Expand All @@ -111,13 +111,13 @@ T_w, Q_w = pfaffian[:skew_tridiagonalize](A)
println()

pf_ltl = Pfaffian_LTL(A)
pf_ltl_w = pfaffian[:pfaffian](A, method="P")
pf_ltl_w = pfaffian[:pfaffian](A, method = "P")

@show abs((pf_ltl - pf_ltl_w)/pf_ltl_w)
@show abs((pf_ltl - pf_ltl_w) / pf_ltl_w)
println()

pf_h = Pfaffian_Householder(A)
pf_h_w = pfaffian[:pfaffian](A, method="H")
pf_h_w = pfaffian[:pfaffian](A, method = "H")

@show abs((pf_h - pf_h_w)/pf_h_w)
@show abs((pf_h - pf_h_w) / pf_h_w)
println()