This Docker environment is set up for machine learning development with Python 3.11, including support for TensorFlow, PyTorch, and Jupyter Lab.
- Python 3.11 base environment
- Jupyter Lab interface
- Support for Streamlit applications
- Pre-installed ML libraries:
- TensorFlow
- PyTorch (CPU version)
- Hugging Face Transformers
- scikit-learn
- and more
docker build -t llm-jupyter-v11 .
Below replace C:/path/to/your/notebooks
with your actual notebooks directory path:
docker run -d --name llm-jupyter-v11-streamlit \
-v C:/path/to/your/notebooks/:/home/git \
-p 8888:8888 -p 8501:8501 \
llm-jupyter-v11:latest \
jupyter lab --port=8888 --ip=0.0.0.0 --allow-root
To run a Streamlit app within the container:
docker exec -it llm-jupyter-v11-streamlit bash -c "cd /home/git && streamlit run globebotter.py --server.address 0.0.0.0"
- Jupyter Lab: http://localhost:8888
- Streamlit: http://localhost:8501
- Your notebooks directory is mounted to
/home/git
inside the container - Ensure you replace
C:/path/to/your/notebooks
with your actual path
- The environment uses Python 3.11 with a slim base image
- No authentication is required for Jupyter Lab (suitable for local development only)
- All Python dependencies are managed through pip and requirements.txt
- The container exposes ports:
- 8888 (Jupyter Lab)
- 8501 (Streamlit)
- 5678 (Debug port)