Skip to content

minman32/LLMDocker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Docker Environment

This Docker environment is set up for machine learning development with Python 3.11, including support for TensorFlow, PyTorch, and Jupyter Lab.

Features

  • Python 3.11 base environment
  • Jupyter Lab interface
  • Support for Streamlit applications
  • Pre-installed ML libraries:
    • TensorFlow
    • PyTorch (CPU version)
    • Hugging Face Transformers
    • scikit-learn
    • and more

Quick Start

Build the Docker Image

docker build -t llm-jupyter-v11 .

Run with Docker Run Command

Below replace C:/path/to/your/notebooks with your actual notebooks directory path:

docker run -d --name llm-jupyter-v11-streamlit \
  -v C:/path/to/your/notebooks/:/home/git \
  -p 8888:8888 -p 8501:8501 \
  llm-jupyter-v11:latest \
  jupyter lab --port=8888 --ip=0.0.0.0 --allow-root

Running Streamlit Applications

To run a Streamlit app within the container:

docker exec -it llm-jupyter-v11-streamlit bash -c "cd /home/git && streamlit run globebotter.py --server.address 0.0.0.0"

Accessing the Applications

Volume Mounts

  • Your notebooks directory is mounted to /home/git inside the container
  • Ensure you replace C:/path/to/your/notebooks with your actual path

Notes

  • The environment uses Python 3.11 with a slim base image
  • No authentication is required for Jupyter Lab (suitable for local development only)
  • All Python dependencies are managed through pip and requirements.txt
  • The container exposes ports:
    • 8888 (Jupyter Lab)
    • 8501 (Streamlit)
    • 5678 (Debug port)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published