EchoCardMAE reconstruction results on the EchoNet-Dynamic dataset.

Segmentation results on the EchoNet-Dynamic and CAMUS dataset.
# remove GIT_LFS_SKIP_SMUDGE=1 if you want to download the pretraining weights
GIT_LFS_SKIP_SMUDGE=1 git clone https://github.com/m1dsolo/EchoCardMAE.git
cd EchoCardMAE
conda create -n EchoCardMAE python=3.10
conda activate EchoCardMAE
pip install -r requirements.txt
git submodule add --depth=1 https://github.com/m1dsolo/yangdl.git yangdl
cd yangdl
pip install -e .
Experimental environment:
- PyTorch 2.5.1
- Python 3.10.15
- GPU memory 24GB
- EchoNet-Dynamic: Download to
EchoCardMAE/dataset/EchoNet-Dynamic
- CAMUS: Download to
EchoCardMAE/dataset/CAMUS
- HMC-QU: Download to
EchoCardMAE/dataset/hmcqu-dataset
- Ejection fraction (EF) prediction:
python -m echonet.avi2npy
- Segmentation:
python -m echonet.avi2edes_npy
You can use pretraining weights provided by us. Or you can pretrain the model by yourself:
python pretrain.py
- EF prediction:
python -m echonet.train_ef
python -m echonet.val_ef
- Segmentation:
python -m echonet.train_seg
- upload the code of CAMUS and HMC-QU
TODO