This project provides tools for interacting with The ANU Quantum Random
Number Generator (qrng.anu.edu.au). It
communicates with their JSON API and provides a qrandom command-line
tool, a Python API, and a Linux /dev/qrandom character device.
quantumrandom works on Python 2 and 3.
Note
As of version 1.7, quantumrandom now uses SSL/TLS by default.
pip install quantumrandom
$ qrandom --int --min 5 --max 15
7
$ qrandom --binary
���I�%��e(�1��c��Ee�4�������j�Կ��=�^H�c�u
oq��G��Z�^���fK�0_��h��s�b��AE=�rR~���(�^Q�)4��{c�������X{f��a�Bk�N%#W
+a�a̙�IB�,S�!ꀔd�2H~�X�Z����R��.f
...
$ qrandom --hex
1dc59fde43b5045120453186d45653dd455bd8e6fc7d8c591f0018fa9261ab2835eb210e8
e267cf35a54c02ce2a93b3ec448c4c7aa84fdedb61c7b0d87c9e7acf8e9fdadc8d68bcaa5a
...
$ qrandom --binary | dd of=data
^C1752+0 records in
1752+0 records out
897024 bytes (897 kB) copied, 77.7588 s, 11.5 kB/s
quantumrandom comes equipped with a multi-threaded character device in userspace. When read from, this device fires up a bunch of threads to fetch data. Not only can you utilize this as a rng, but you can also feed this data back into your system's entropy pool.
In order to build it's dependencies, you'll need the following packages
installed: svn, gcc-c++, fuse-devel, gccxml, libattr-devel.
On Fedora 17 and newer, you'll also need the kernel-modules-extra package
installed for the cuse module.
Note
The /dev/qrandom character device currently only supports Python2
pip install ctypeslib==dev hg+https://cusepy.googlecode.com/hg sudo modprobe cuse sudo chmod 666 /dev/cuse qrandom-dev sudo chmod 666 /dev/qrandom
By default it will use 3 threads, which can be changed by passing '-t #' into the qrandom-dev.
Testing the randomness for FIPS 140-2 compliance
$ cat /dev/qrandom | rngtest --blockcount=1000 rngtest: bits received from input: 20000032 rngtest: FIPS 140-2 successes: 1000 rngtest: FIPS 140-2 failures: 0 rngtest: FIPS 140-2(2001-10-10) Monobit: 0 rngtest: FIPS 140-2(2001-10-10) Poker: 0 rngtest: FIPS 140-2(2001-10-10) Runs: 0 rngtest: FIPS 140-2(2001-10-10) Long run: 0 rngtest: FIPS 140-2(2001-10-10) Continuous run: 0 rngtest: input channel speed: (min=17.696; avg=386.711; max=4882812.500)Kibits/s rngtest: FIPS tests speed: (min=10.949; avg=94.538; max=161.640)Mibits/s rngtest: Program run time: 50708319 microseconds
You can utilize the rngtest tool in pipe mode to ensure that all of your data is FIPS 140-2 compliant:
$ cat /dev/qrandom | rngtest --pipe
sudo rngd --rng-device=/dev/qrandom --random-device=/dev/random --foreground
watch -n 1 cat /proc/sys/kernel/random/entropy_avail
The quantumrandom Python module contains a low-level get_data
function, which is modelled after the ANU Quantum Random Number
Generator's JSON API. It returns variable-length lists of either
uint16 or hex16 data.
>>> quantumrandom.get_data() [26646] >>> quantumrandom.get_data(data_type='uint16', array_length=5) [42796, 32457, 9242, 11316, 21078] >>> quantumrandom.get_data(data_type='hex16', array_length=5, block_size=2) ['f1d5', '0eb3', '1119', '7cfd', '64ce']
Valid data_type values are uint16 and hex16, and the
array_length and block_size cannot be larger than 1024. If for some
reason the API call is not successful, or the incorrect amount of data is
returned from the server, this function will raise an exception.
Based on this get_data function, quantumrandom also provides a bunch
of higher-level helper functions that make easy to perform a variety of
tasks.
>>> quantumrandom.randint(0, 20) 5 >>> quantumrandom.hex()[:10] '8272613343' >>> quantumrandom.binary()[0] '\xa5' >>> len(quantumrandom.binary()) 10000 >>> quantumrandom.uint16() numpy.array([24094, 13944, 22109, 22908, 34878, 33797, 47221, 21485, 37930, ...], dtype=numpy.uint16) >>> quantumrandom.uint16().data[:10] '\x87\x7fY.\xcc\xab\xea\r\x1c`'