Skip to content

Exploring the extent up to which images generated using generative models can be identified with their respective generator models

Notifications You must be signed in to change notification settings

kunwardeeps/GanAuthorship

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative Models Authorship

Summary

The purpose of this project is to explore the extent upto which images generated using generative models can be identified with their respective generator models. Two major techniques are used. One of them is to model this problem as a classification task and use a Convolutional Neural Network to classify the images generated from respective GANs. The other technique is to train an inverse model which tries to learn the latent space of the GAN. The image is then reconstructed and compared with the original input image. If the L2 norm of the distance between two images is less than a given threshold, then it is highly likely that the image is generated with the same Generator.

Datasets

The datasets used are MNIST and CIFAR-10.

Results

The results are documented in report.pdf

About

Exploring the extent up to which images generated using generative models can be identified with their respective generator models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published