Bedrock Wrapper is an npm package that simplifies the integration of existing OpenAI-compatible API objects with AWS Bedrock's serverless inference LLMs. Follow the steps below to integrate into your own application, or alternativly use the π Bedrock Proxy Endpoint project to spin up your own custom OpenAI server endpoint for even easier inference (using the standard baseUrl
, and apiKey
params).

- install package:
npm install bedrock-wrapper
-
import
bedrockWrapper
import { bedrockWrapper } from "bedrock-wrapper";
-
create an
awsCreds
object and fill in your AWS credentialsconst awsCreds = { region: AWS_REGION, accessKeyId: AWS_ACCESS_KEY_ID, secretAccessKey: AWS_SECRET_ACCESS_KEY, };
-
clone your openai chat completions object into
openaiChatCompletionsCreateObject
or create a new one and edit the valuesconst openaiChatCompletionsCreateObject = { "messages": messages, "model": "Llama-3-1-8b", "max_tokens": LLM_MAX_GEN_TOKENS, "stream": true, "temperature": LLM_TEMPERATURE, "top_p": LLM_TOP_P, "stop_sequences": ["STOP", "END"], // Optional: sequences that will stop generation };
the
messages
variable should be in openai's role/content formatmessages = [ { role: "system", content: "You are a helpful AI assistant that follows instructions extremely well. Answer the user questions accurately. Think step by step before answering the question. You will get a $100 tip if you provide the correct answer.", }, { role: "user", content: "Describe why openai api standard used by lots of serverless LLM api providers is better than aws bedrock invoke api offered by aws bedrock. Limit your response to five sentences.", }, { role: "assistant", content: "", }, ]
the
model
value should be the correspondingmodelName
value in thebedrock_models
section below (see Supported Models below) -
call the
bedrockWrapper
function and pass in the previously definedawsCreds
andopenaiChatCompletionsCreateObject
objects// create a variable to hold the complete response let completeResponse = ""; // invoke the streamed bedrock api response for await (const chunk of bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject)) { completeResponse += chunk; // --------------------------------------------------- // -- each chunk is streamed as it is received here -- // --------------------------------------------------- process.stdout.write(chunk); // β do stuff with the streamed chunk } // console.log(`\n\completeResponse:\n${completeResponse}\n`); // β optional do stuff with the complete response returned from the API reguardless of stream or not
if calling the unstreamed version you can call bedrockWrapper like this
// create a variable to hold the complete response let completeResponse = ""; if (!openaiChatCompletionsCreateObject.stream){ // invoke the unstreamed bedrock api response const response = await bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject); for await (const data of response) { completeResponse += data; } // ---------------------------------------------------- // -- unstreamed complete response is available here -- // ---------------------------------------------------- console.log(`\n\completeResponse:\n${completeResponse}\n`); // β do stuff with the complete response }
modelName | AWS Model Id | Image |
---|---|---|
Claude-4-1-Opus | us.anthropic.claude-opus-4-1-20250805-v1:0 | β |
Claude-4-1-Opus-Thinking | us.anthropic.claude-opus-4-1-20250805-v1:0 | β |
Claude-4-Opus | us.anthropic.claude-opus-4-20250514-v1:0 | β |
Claude-4-Opus-Thinking | us.anthropic.claude-opus-4-20250514-v1:0 | β |
Claude-4-Sonnet | us.anthropic.claude-sonnet-4-20250514-v1:0 | β |
Claude-4-Sonnet-Thinking | us.anthropic.claude-sonnet-4-20250514-v1:0 | β |
Claude-3-7-Sonnet-Thinking | us.anthropic.claude-3-7-sonnet-20250219-v1:0 | β |
Claude-3-7-Sonnet | us.anthropic.claude-3-7-sonnet-20250219-v1:0 | β |
Claude-3-5-Sonnet-v2 | anthropic.claude-3-5-sonnet-20241022-v2:0 | β |
Claude-3-5-Sonnet | anthropic.claude-3-5-sonnet-20240620-v1:0 | β |
Claude-3-5-Haiku | anthropic.claude-3-5-haiku-20241022-v1:0 | β |
Claude-3-Haiku | anthropic.claude-3-haiku-20240307-v1:0 | β |
Nova-Pro | us.amazon.nova-pro-v1:0 | β |
Nova-Lite | us.amazon.nova-lite-v1:0 | β |
Nova-Micro | us.amazon.nova-micro-v1:0 | β |
GPT-OSS-120B | openai.gpt-oss-120b-1:0 | β |
GPT-OSS-120B-Thinking | openai.gpt-oss-120b-1:0 | β |
GPT-OSS-20B | openai.gpt-oss-20b-1:0 | β |
GPT-OSS-20B-Thinking | openai.gpt-oss-20b-1:0 | β |
Llama-3-3-70b | us.meta.llama3-3-70b-instruct-v1:0 | β |
Llama-3-2-1b | us.meta.llama3-2-1b-instruct-v1:0 | β |
Llama-3-2-3b | us.meta.llama3-2-3b-instruct-v1:0 | β |
Llama-3-2-11b | us.meta.llama3-2-11b-instruct-v1:0 | β |
Llama-3-2-90b | us.meta.llama3-2-90b-instruct-v1:0 | β |
Llama-3-1-8b | meta.llama3-1-8b-instruct-v1:0 | β |
Llama-3-1-70b | meta.llama3-1-70b-instruct-v1:0 | β |
Llama-3-1-405b | meta.llama3-1-405b-instruct-v1:0 | β |
Llama-3-8b | meta.llama3-8b-instruct-v1:0 | β |
Llama-3-70b | meta.llama3-70b-instruct-v1:0 | β |
Mistral-7b | mistral.mistral-7b-instruct-v0:2 | β |
Mixtral-8x7b | mistral.mixtral-8x7b-instruct-v0:1 | β |
Mistral-Large | mistral.mistral-large-2402-v1:0 | β |
To return the list progrmatically you can import and call listBedrockWrapperSupportedModels
:
import { listBedrockWrapperSupportedModels } from 'bedrock-wrapper';
console.log(`\nsupported models:\n${JSON.stringify(await listBedrockWrapperSupportedModels())}\n`);
Additional Bedrock model support can be added.
Please modify the bedrock_models.js
file and submit a PR π or create an Issue.
For models with image support (Claude 4 series, Claude 3.7 Sonnet, Claude 3.5 Sonnet, Claude 3 Haiku, Nova Pro, and Nova Lite), you can include images in your messages using the following format:
messages = [
{
role: "system",
content: "You are a helpful AI assistant that can analyze images.",
},
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: {
url: "..." // base64 encoded image
}
}
]
}
]
You can also use a direct URL to an image instead of base64 encoding:
messages = [
{
role: "user",
content: [
{ type: "text", text: "Describe this image in detail." },
{
type: "image_url",
image_url: {
url: "https://example.com/path/to/image.jpg" // direct URL to image
}
}
]
}
]
You can include multiple images in a single message by adding more image_url objects to the content array.
Stop sequences are custom text sequences that cause the model to stop generating text. This is useful for controlling where the model stops its response.
const openaiChatCompletionsCreateObject = {
"messages": messages,
"model": "Claude-3-5-Sonnet",
"max_tokens": 100,
"stop_sequences": ["STOP", "END", "\n\n"], // Array of stop sequences
// OR use single string format:
// "stop": "STOP"
};
Model Support:
- β Claude models: Fully supported (up to 8,191 sequences)
- β Nova models: Fully supported (up to 4 sequences)
- β GPT-OSS models: Fully supported
- β Mistral models: Fully supported (up to 10 sequences)
- β Llama models: Not supported (AWS Bedrock limitation)
Features:
- Compatible with OpenAI's
stop
parameter (single string or array) - Also accepts
stop_sequences
parameter for explicit usage - Automatic conversion between string and array formats
- Model-specific parameter mapping handled automatically
Example Usage:
// Stop generation when model tries to output "7"
const result = await bedrockWrapper(awsCreds, {
messages: [{ role: "user", content: "Count from 1 to 10" }],
model: "Claude-3-5-Sonnet", // Use Claude, Nova, or Mistral models
stop_sequences: ["7"]
});
// Response: "1, 2, 3, 4, 5, 6," (stops before "7")
// Note: Llama models will ignore stop sequences due to AWS Bedrock limitations
In case you missed it at the beginning of this doc, for an even easier setup, use the π Bedrock Proxy Endpoint project to spin up your own custom OpenAI server endpoint (using the standard baseUrl
, and apiKey
params).
- AWS Meta Llama Models User Guide
- AWS Mistral Models User Guide
- OpenAI API
- AWS Bedrock
- AWS SDK for JavaScript
Please consider sending me a tip to support my work π