Skip to content

πŸͺ¨ Bedrock Wrapper is an npm package that simplifies the integration of existing OpenAI-compatible API objects with AWS Bedrock's serverless inference LLMs.

License

Notifications You must be signed in to change notification settings

jparkerweb/bedrock-wrapper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

77 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸͺ¨ Bedrock Wrapper

Bedrock Wrapper is an npm package that simplifies the integration of existing OpenAI-compatible API objects with AWS Bedrock's serverless inference LLMs. Follow the steps below to integrate into your own application, or alternativly use the πŸ”€ Bedrock Proxy Endpoint project to spin up your own custom OpenAI server endpoint for even easier inference (using the standard baseUrl, and apiKey params).

bedrock-wrapper


Maintained by

eQuill Labs

Install

  • install package: npm install bedrock-wrapper

Usage

  1. import bedrockWrapper

    import { bedrockWrapper } from "bedrock-wrapper";
  2. create an awsCreds object and fill in your AWS credentials

    const awsCreds = {
        region: AWS_REGION,
        accessKeyId: AWS_ACCESS_KEY_ID,
        secretAccessKey: AWS_SECRET_ACCESS_KEY,
    };
  3. clone your openai chat completions object into openaiChatCompletionsCreateObject or create a new one and edit the values

    const openaiChatCompletionsCreateObject = {
        "messages": messages,
        "model": "Llama-3-1-8b",
        "max_tokens": LLM_MAX_GEN_TOKENS,
        "stream": true,
        "temperature": LLM_TEMPERATURE,
        "top_p": LLM_TOP_P,
        "stop_sequences": ["STOP", "END"], // Optional: sequences that will stop generation
    };

    the messages variable should be in openai's role/content format

    messages = [
        {
            role: "system",
            content: "You are a helpful AI assistant that follows instructions extremely well. Answer the user questions accurately. Think step by step before answering the question. You will get a $100 tip if you provide the correct answer.",
        },
        {
            role: "user",
            content: "Describe why openai api standard used by lots of serverless LLM api providers is better than aws bedrock invoke api offered by aws bedrock. Limit your response to five sentences.",
        },
        {
            role: "assistant",
            content: "",
        },
    ]

    the model value should be the corresponding modelName value in the bedrock_models section below (see Supported Models below)

  4. call the bedrockWrapper function and pass in the previously defined awsCreds and openaiChatCompletionsCreateObject objects

    // create a variable to hold the complete response
    let completeResponse = "";
    // invoke the streamed bedrock api response
    for await (const chunk of bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject)) {
        completeResponse += chunk;
        // ---------------------------------------------------
        // -- each chunk is streamed as it is received here --
        // ---------------------------------------------------
        process.stdout.write(chunk); // β‡  do stuff with the streamed chunk
    }
    // console.log(`\n\completeResponse:\n${completeResponse}\n`); // β‡  optional do stuff with the complete response returned from the API reguardless of stream or not

    if calling the unstreamed version you can call bedrockWrapper like this

    // create a variable to hold the complete response
    let completeResponse = "";
    if (!openaiChatCompletionsCreateObject.stream){ // invoke the unstreamed bedrock api response
        const response = await bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject);
        for await (const data of response) {
            completeResponse += data;
        }
        // ----------------------------------------------------
        // -- unstreamed complete response is available here --
        // ----------------------------------------------------
        console.log(`\n\completeResponse:\n${completeResponse}\n`); // β‡  do stuff with the complete response
    }

Supported Models

modelName AWS Model Id Image
Claude-4-1-Opus us.anthropic.claude-opus-4-1-20250805-v1:0 βœ…
Claude-4-1-Opus-Thinking us.anthropic.claude-opus-4-1-20250805-v1:0 βœ…
Claude-4-Opus us.anthropic.claude-opus-4-20250514-v1:0 βœ…
Claude-4-Opus-Thinking us.anthropic.claude-opus-4-20250514-v1:0 βœ…
Claude-4-Sonnet us.anthropic.claude-sonnet-4-20250514-v1:0 βœ…
Claude-4-Sonnet-Thinking us.anthropic.claude-sonnet-4-20250514-v1:0 βœ…
Claude-3-7-Sonnet-Thinking us.anthropic.claude-3-7-sonnet-20250219-v1:0 βœ…
Claude-3-7-Sonnet us.anthropic.claude-3-7-sonnet-20250219-v1:0 βœ…
Claude-3-5-Sonnet-v2 anthropic.claude-3-5-sonnet-20241022-v2:0 βœ…
Claude-3-5-Sonnet anthropic.claude-3-5-sonnet-20240620-v1:0 βœ…
Claude-3-5-Haiku anthropic.claude-3-5-haiku-20241022-v1:0 ❌
Claude-3-Haiku anthropic.claude-3-haiku-20240307-v1:0 βœ…
Nova-Pro us.amazon.nova-pro-v1:0 βœ…
Nova-Lite us.amazon.nova-lite-v1:0 βœ…
Nova-Micro us.amazon.nova-micro-v1:0 ❌
GPT-OSS-120B openai.gpt-oss-120b-1:0 ❌
GPT-OSS-120B-Thinking openai.gpt-oss-120b-1:0 ❌
GPT-OSS-20B openai.gpt-oss-20b-1:0 ❌
GPT-OSS-20B-Thinking openai.gpt-oss-20b-1:0 ❌
Llama-3-3-70b us.meta.llama3-3-70b-instruct-v1:0 ❌
Llama-3-2-1b us.meta.llama3-2-1b-instruct-v1:0 ❌
Llama-3-2-3b us.meta.llama3-2-3b-instruct-v1:0 ❌
Llama-3-2-11b us.meta.llama3-2-11b-instruct-v1:0 ❌
Llama-3-2-90b us.meta.llama3-2-90b-instruct-v1:0 ❌
Llama-3-1-8b meta.llama3-1-8b-instruct-v1:0 ❌
Llama-3-1-70b meta.llama3-1-70b-instruct-v1:0 ❌
Llama-3-1-405b meta.llama3-1-405b-instruct-v1:0 ❌
Llama-3-8b meta.llama3-8b-instruct-v1:0 ❌
Llama-3-70b meta.llama3-70b-instruct-v1:0 ❌
Mistral-7b mistral.mistral-7b-instruct-v0:2 ❌
Mixtral-8x7b mistral.mixtral-8x7b-instruct-v0:1 ❌
Mistral-Large mistral.mistral-large-2402-v1:0 ❌

To return the list progrmatically you can import and call listBedrockWrapperSupportedModels:

import { listBedrockWrapperSupportedModels } from 'bedrock-wrapper';
console.log(`\nsupported models:\n${JSON.stringify(await listBedrockWrapperSupportedModels())}\n`);

Additional Bedrock model support can be added.
Please modify the bedrock_models.js file and submit a PR πŸ† or create an Issue.


Image Support

For models with image support (Claude 4 series, Claude 3.7 Sonnet, Claude 3.5 Sonnet, Claude 3 Haiku, Nova Pro, and Nova Lite), you can include images in your messages using the following format:

messages = [
    {
        role: "system",
        content: "You are a helpful AI assistant that can analyze images.",
    },
    {
        role: "user",
        content: [
            { type: "text", text: "What's in this image?" },
            { 
                type: "image_url", 
                image_url: {
                    url: "..." // base64 encoded image
                }
            }
        ]
    }
]

You can also use a direct URL to an image instead of base64 encoding:

messages = [
    {
        role: "user",
        content: [
            { type: "text", text: "Describe this image in detail." },
            { 
                type: "image_url", 
                image_url: {
                    url: "https://example.com/path/to/image.jpg" // direct URL to image
                }
            }
        ]
    }
]

You can include multiple images in a single message by adding more image_url objects to the content array.


Stop Sequences

Stop sequences are custom text sequences that cause the model to stop generating text. This is useful for controlling where the model stops its response.

const openaiChatCompletionsCreateObject = {
    "messages": messages,
    "model": "Claude-3-5-Sonnet",
    "max_tokens": 100,
    "stop_sequences": ["STOP", "END", "\n\n"], // Array of stop sequences
    // OR use single string format:
    // "stop": "STOP"
};

Model Support:

  • βœ… Claude models: Fully supported (up to 8,191 sequences)
  • βœ… Nova models: Fully supported (up to 4 sequences)
  • βœ… GPT-OSS models: Fully supported
  • βœ… Mistral models: Fully supported (up to 10 sequences)
  • ❌ Llama models: Not supported (AWS Bedrock limitation)

Features:

  • Compatible with OpenAI's stop parameter (single string or array)
  • Also accepts stop_sequences parameter for explicit usage
  • Automatic conversion between string and array formats
  • Model-specific parameter mapping handled automatically

Example Usage:

// Stop generation when model tries to output "7"
const result = await bedrockWrapper(awsCreds, {
    messages: [{ role: "user", content: "Count from 1 to 10" }],
    model: "Claude-3-5-Sonnet",  // Use Claude, Nova, or Mistral models
    stop_sequences: ["7"]
});
// Response: "1, 2, 3, 4, 5, 6," (stops before "7")

// Note: Llama models will ignore stop sequences due to AWS Bedrock limitations

πŸ“’ P.S.

In case you missed it at the beginning of this doc, for an even easier setup, use the πŸ”€ Bedrock Proxy Endpoint project to spin up your own custom OpenAI server endpoint (using the standard baseUrl, and apiKey params).

bedrock-proxy-endpoing


πŸ“š References


Please consider sending me a tip to support my work πŸ˜€

About

πŸͺ¨ Bedrock Wrapper is an npm package that simplifies the integration of existing OpenAI-compatible API objects with AWS Bedrock's serverless inference LLMs.

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

Contributors 3

  •  
  •  
  •