This repository contains all the code examples as IPython notebooks.
- 1.1. What are Python, IPython, and Jupyter?
 - 1.2. Installing Python with Anaconda (Complete sample!)
 - 1.3. Introducing the Notebook (Complete sample!)
 - 1.4. A crash course on Python (Complete sample!)
 - 1.5. Ten Jupyter/IPython essentials
 - 1.6. Summary
 
- 2.1. Exploring a dataset in the Notebook
 - 2.2. Manipulating data
 - 2.3. Complex operations
 - 2.4. Summary
 
- 3.1. A primer to vector computing
 - 3.2. Creating and loading arrays
 - 3.3. Basic array manipulations
 - 3.4. Computing with NumPy arrays (Complete sample!)
 - 3.5. Summary
 
- 4.1. Choosing a plotting backend
 - 4.2. matplotlib and seaborn essentials
 - 4.3. Image processing
 - 4.4. Further plotting and visualization libraries
 - 4.5. Summary
 
- 5.1. Accelerating Python code with Numba
 - 5.2. Writing C in Python with Cython
 - 5.3. Distributing tasks on several cores with IPython.parallel
 - 5.4. Further high-performance computing techniques
 - 5.5. Summary