Skip to content

Adding plugins for doing processing of differential phase contrast datasets #134

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 16 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
343 changes: 343 additions & 0 deletions hyperspyui/plugins/dpc_plugins.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,343 @@
from hyperspyui.plugins.plugin import Plugin
import numpy as np
import hyperspy.api as hs
from scipy.optimize import leastsq
from hyperspyui.widgets.stringinput import StringInputDialog
from scipy.ndimage.filters import gaussian_filter


class DpcPlugins(Plugin):
name = 'Differential phase contrast plugins'

def create_actions(self):
self.add_action(
'Beam shifts from segmented.get_beam_shifts',
'Segmented detector to shifts',
self.get_beam_shifts,
tip="Calculate the beam shifts from a segmented STEM DPC "
"dataset, requires the four outer segments.")
self.add_action(
'FFT filter beam shifts.fft_filter_shifts',
"FFT filter beam shift signal",
self.fft_filter_shifts,
tip="Do FFT filtering on a beam shift signal, to suppress "
" high frequencies ")
self.add_action(
'Subtract plane from beamshifts.subtract_plane',
'Subtract plane from beamshifts',
self.subtract_plane,
tip="Subtract a plane from a beam shift signal. "
"Useful for removing the effects of d-scan.")
self.add_action(
'Make color image from beam shifts.make_color_image',
'Make color image from beam shifts',
self.make_color_image,
tip="Make a color RGB signal from beam shift x and y signals")
self.add_action(
'Make bivariate histogram.make_bivariate_histogram',
'Make bivariate histogram',
self.make_bivariate_histogram,
tip="Make a bivariate histogram from x and y beam shift "
"signals.")

def create_menu(self):
self.add_menuitem(
'DPC',
self.ui.actions[
'Beam shifts from segmented.get_beam_shifts'])
self.add_menuitem(
'DPC',
self.ui.actions[
'FFT filter beam shifts.fft_filter_shifts'])
self.add_menuitem(
'DPC',
self.ui.actions[
'Subtract plane from beamshifts.subtract_plane'])
self.add_menuitem(
'DPC',
self.ui.actions[
'Make color image from beam shifts.make_color_image'])
self.add_menuitem(
'DPC',
self.ui.actions[
'Make bivariate histogram.make_bivariate_histogram'])

def get_beam_shifts(self, signal_list=None, plot_output=True):
ui = self.ui
if signal_list is None:
signal_wrapper_list = ui.select_x_signals(
4, ["ext 0", "ext 1", "ext 2", "ext 3"])
if signal_wrapper_list is None:
return
s_ext0 = signal_wrapper_list[0].signal
s_ext1 = signal_wrapper_list[1].signal
s_ext2 = signal_wrapper_list[2].signal
s_ext3 = signal_wrapper_list[3].signal
else:
s_ext0 = signal_list[0]
s_ext1 = signal_list[1]
s_ext2 = signal_list[2]
s_ext3 = signal_list[3]
s_ext0.change_dtype('float64')
s_ext1.change_dtype('float64')
s_ext2.change_dtype('float64')
s_ext3.change_dtype('float64')
s_ext02 = s_ext0 - s_ext2
s_ext13 = s_ext1 - s_ext3
s_ext02.metadata.General.title = 'dif02'
s_ext13.metadata.General.title = 'dif13'
if plot_output:
s_ext02.plot()
s_ext13.plot()
return s_ext02, s_ext13

def subtract_plane(
self, signal=None, corner_percent=None, plot_output=True):
ui = self.ui
if signal is None:
signal_wrapper = ui.select_x_signals(1, ["signal"])
if signal_wrapper is None:
return
signal = signal_wrapper.signal
if corner_percent is None:
dialog = StringInputDialog("Percent of corner", "5")
corner_percent = dialog.prompt_modal(rejection=None)
if corner_percent is None:
return
corner_size = float(corner_percent) * 0.01
d_axis0_range = (
signal.axes_manager[0].high_value -
signal.axes_manager[0].low_value) * corner_size
d_axis1_range = (
signal.axes_manager[1].high_value -
signal.axes_manager[1].low_value) * corner_size
s_corner00 = signal.isig[0:d_axis0_range, 0:d_axis1_range]
s_corner01 = signal.isig[0:d_axis0_range, -d_axis1_range:-1]
s_corner10 = signal.isig[-d_axis0_range:-1, 0:d_axis1_range]
s_corner11 = signal.isig[-d_axis0_range:-1, -d_axis1_range:-1]

corner00 = (
s_corner00.axes_manager[0].axis.mean(),
s_corner00.axes_manager[1].axis.mean(),
s_corner00.data.mean())
corner01 = (
s_corner01.axes_manager[0].axis.mean(),
s_corner01.axes_manager[1].axis.mean(),
s_corner01.data.mean())
corner10 = (
s_corner10.axes_manager[0].axis.mean(),
s_corner10.axes_manager[1].axis.mean(),
s_corner10.data.mean())
corner11 = (
s_corner11.axes_manager[0].axis.mean(),
s_corner11.axes_manager[1].axis.mean(),
s_corner11.data.mean())
corner_values = np.array((corner00, corner01, corner10, corner11)).T
p0 = [0.1, 0.1, 0.1, 0.1]

p = leastsq(self._residuals, p0, args=(None, corner_values))[0]

xx, yy = np.meshgrid(
signal.axes_manager[0].axis, signal.axes_manager[1].axis)
zz = (-p[0] * xx - p[1] * yy - p[3]) / p[2]

new_signal = signal.deepcopy()
new_signal.data = new_signal.data - zz
new_signal.metadata = signal.metadata.deepcopy()
new_name = new_signal.metadata.General.title + " plane subtracted"
new_signal.metadata.General.title = new_name
if plot_output:
new_signal.plot()
return new_signal

def _residuals(self, params, signal, X):
return self._f_min(X, params)

def _f_min(self, X, p):
plane_xyz = p[0:3]
distance = (plane_xyz * X.T).sum(axis=1) + p[3]
return distance / np.linalg.norm(plane_xyz)

def make_color_image(self, signal_list=None, plot_output=True):
ui = self.ui

if signal_list is None:
signal_wrapper_list = ui.select_x_signals(
2, ["Deflection X", "Deflection Y"])
if signal_wrapper_list is None:
return
signal0 = signal_wrapper_list[0].signal
signal1 = signal_wrapper_list[1].signal
else:
signal0 = signal_list[0]
signal1 = signal_list[1]

signal_rgb = hs.signals.Signal1D(
self._get_rgb_array(signal0, signal1) * 255)
signal_rgb.change_dtype("uint8")
signal_rgb.change_dtype("rgb8")
signal_rgb.axes_manager = signal0.axes_manager.deepcopy()
signal_rgb.metadata = signal0.metadata.deepcopy()
signal_rgb.metadata.General.title = "Deflection color image"
if plot_output:
signal_rgb.plot()
return signal_rgb

def _get_color_channel(self, a_array, mu0, si0, mu1, si1, mu2, si2):
color_array = np.zeros((a_array.shape[0], a_array.shape[1]))
color_array[:] = 1. - (
np.exp(-1 * ((a_array - mu0)**2) / si0) +
np.exp(-1 * ((a_array - mu1)**2) / si1) +
np.exp(-1 * ((a_array - mu2)**2) / si2))
return(color_array)

def _get_rgb_array(self, signal0, signal1):
arctan_array = np.arctan2(signal0.data, signal1.data) + np.pi

color0 = self._get_color_channel(
arctan_array, 3.7, 0.8, 5.8, 5.0, 0.0, 0.3)
color1 = self._get_color_channel(
arctan_array, 2.9, 0.6, 1.7, 0.3, 2.4, 0.5)
color2 = self._get_color_channel(
arctan_array, 0.0, 1.3, 6.4, 1.0, 1.0, 0.75)

rgb_array = np.zeros(
(signal0.data.shape[0], signal0.data.shape[1], 3))
rgb_array[:, :, 2] = color0
rgb_array[:, :, 1] = color1
rgb_array[:, :, 0] = color2
return(rgb_array)

def make_bivariate_histogram(self, signal_list=None, plot_output=True):
ui = self.ui
if signal_list is None:
signal_wrapper_list = ui.select_x_signals(
2, ["Deflection X", "Deflection Y"])
if signal_wrapper_list is None:
return
signal0 = signal_wrapper_list[0].signal
signal1 = signal_wrapper_list[1].signal
else:
signal0 = signal_list[0]
signal1 = signal_list[1]
s0_flat = signal0.data.flatten()
s1_flat = signal1.data.flatten()
spatial_std = 3
bins = 200

s0_flat_std = s0_flat.std()
s0_flat_mean = s0_flat.mean()
s1_flat_std = s1_flat.std()
s1_flat_mean = s1_flat.mean()
if (s0_flat_std > s1_flat_std):
s0_range = (
s0_flat_mean - s0_flat_std * spatial_std,
s0_flat_mean + s0_flat_std * spatial_std)
s1_range = (
s1_flat_mean - s0_flat_std * spatial_std,
s1_flat_mean + s0_flat_std * spatial_std)
else:
s0_range = (
s0_flat_mean - s1_flat_std * spatial_std,
s0_flat_mean + s1_flat_std * spatial_std)
s1_range = (
s1_flat_mean - s1_flat_std * spatial_std,
s1_flat_mean + s1_flat_std * spatial_std)

hist2d, xedges, yedges = np.histogram2d(
s0_flat,
s1_flat,
bins=bins,
range=[
[s0_range[0], s0_range[1]],
[s1_range[0], s1_range[1]]])

s = hs.signals.Signal2D(hist2d)
s.metadata.General.title = "Bivariate histogram"
s.axes_manager[0].offset = xedges[0]
s.axes_manager[0].scale = xedges[1] - xedges[0]
s.axes_manager[1].offset = yedges[0]
s.axes_manager[1].scale = yedges[1] - yedges[0]

if plot_output:
s.plot()
return s

def fft_filter_shifts(
self, signal_list=None,
mask_radius=None, smoothing_factor=None, plot_output=True):
"""
Do FFT filtering of x and y beam shift signals by removing the high
frequency contributions. This is useful for reducing the effects
from diffraction contrast, since these normally vary at a higher
frequency compared to the DPC contrast.

This is done by:
- Fourier transforming the signal
- Masking the low frequencies in the Fourier transformed signal
- Inverse Fourier transforming this masked signal
- Subtracting a factor of this masked and inverted signal from the
original signal
This process is done separately for each signal.

Input parameters:
Mask radius : number
The size of the mask used on the Fourier transformed signal.
A smaller number will subtract more of the signal.
Smoothing factor : number
The amount of intensity from the masked and inverted signal
which is subtracted from the original signal.
"""
ui = self.ui
if signal_list is None:
signal_wrapper_list = ui.select_x_signals(
2, ["Deflection X", "Deflection Y"])
if signal_wrapper_list is None:
return
s_dif02 = signal_wrapper_list[0].signal
s_dif13 = signal_wrapper_list[1].signal
else:
s_dif02 = signal_list[0]
s_dif13 = signal_list[1]
if mask_radius is None:
dialog = StringInputDialog("Mask radius:", "20")
mask_radius = dialog.prompt_modal(rejection=None)
if mask_radius is None:
return
if smoothing_factor is None:
dialog = StringInputDialog("Smoothing factor:", "0.7")
smoothing_factor = dialog.prompt_modal(rejection=None)
if smoothing_factor is None:
return
fft02 = np.fft.fftshift(np.fft.fft2(s_dif02.data))
fft13 = np.fft.fftshift(np.fft.fft2(s_dif13.data))
a, b = s_dif02.axes_manager[0].size / \
2, s_dif02.axes_manager[0].size / 2
n = s_dif02.axes_manager[0].size
r = float(mask_radius)
y, x = np.ogrid[-a:n - a, -b:n - b]
mask = x * x + y * y <= r * r
mask = np.zeros_like(mask, dtype="float64") + 1 - mask
mask_blurred = gaussian_filter(mask, sigma=7)
fft02 *= mask_blurred
fft02 = np.fft.fftshift(fft02)
fft13 *= mask_blurred
fft13 = np.fft.fftshift(fft13)
ifft02 = np.fft.ifft2(fft02)
ifft13 = np.fft.ifft2(fft13)
s_ifft02 = hs.signals.Signal2D(np.real(ifft02))
s_ifft13 = hs.signals.Signal2D(np.real(ifft13))
s_ifft02.data *= float(smoothing_factor)
s_ifft13.data *= float(smoothing_factor)
s_dif02_filtered = s_dif02 - s_ifft02
s_dif13_filtered = s_dif13 - s_ifft13
s_dif02_filtered.change_dtype('float32')
s_dif13_filtered.change_dtype('float32')
name_02 = s_dif02_filtered.metadata.General.title + ' filtered'
name_13 = s_dif13_filtered.metadata.General.title + ' filtered'
s_dif02_filtered.metadata.General.title = name_02
s_dif13_filtered.metadata.General.title = name_13
if plot_output:
s_dif02_filtered.plot()
s_dif13_filtered.plot()
return s_dif02_filtered, s_dif13_filtered
Loading