EyeAI is an advanced deep learning system designed to detect and classify diabetic retinopathy from retinal images. Using state-of-the-art transfer learning and ensemble techniques, the system achieves high accuracy in identifying different stages of retinopathy, from mild to proliferative DR.
- Multi-model ensemble learning with ResNet and VGG architectures
- Advanced image preprocessing techniques
- Explainable AI visualizations using GradCAM
- Comprehensive performance metrics including Cohen's Kappa
EyeAI-Retinopathy-Detection/
├── bagging/
│ ├── resnet18Bagging.py
│ ├── resnet34Bagging.py
│ └── vgg16Bagging.py
├── boosting/
│ ├── resnet18Boosting.py
│ ├── resnet34Boosting.py
│ └── vgg16Boosting.py
├── stacking/
│ ├── resnet18Stacking.py
│ ├── resnet34Stacking.py
│ └── vgg16Stacking.py
├── aio.py
├── visualizations/
│ ├── gradcam/
│ └── training_metrics/
├── trained_models/
│ ├── resnet18/
│ ├── resnet34/
│ └── vgg16/
├── requirements.txt
└── README.md
- Clone the repository:
git clone https://github.com/yourusername/EyeAI-Retinopathy-Detection.git
cd EyeAI-Retinopathy-Detection
- Create and activate virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Download the DeepDRiD dataset from the provided source
- Place the dataset in the appropriate directory:
mkdir data
mv downloaded_dataset data/deepdrid
python aio.py
cd bagging
python resnet18Bagging.py
cd boosting
python resnet18Boosting.py
cd stacking
python resnet18Stacking.py
- ResNet18
- ResNet34
- VGG16
- Ben Graham Preprocessing
- Circle Cropping
- CLAHE
- Gaussian Blur
- Image Sharpening
- Bagging
- Boosting
- Stacking
The system evaluates performance using:
- Cohen's Kappa Score
- Accuracy
- Loss Metrics
- ROC-AUC Curves
python visualizations/plot_metrics.py
python visualizations/generate_gradcam.py --model resnet18 --image_path path/to/image
- Fork the repository
- Create a feature branch
- Commit changes
- Push to the branch
- Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
Special thanks to the DeepDRiD dataset creators and the medical professionals who contributed to the ground truth labeling.
For questions or collaborations, please open an issue in the repository.