Q Business Suite (QBS) is an AI-powered workspace developed on AWS that unifies Amazon Q Business, Amazon QuickSight, and Q Apps. It enables users to perform natural language querying, visualize data, and build no-code workflows, streamlining enterprise data operations in a secure, governed environment.
QBusinessSuite-AWS/
├── README.md # Project overview and setup instructions
├── LICENSE # Licensing information (AWS proprietary if internal)
├── requirements.txt # Dependencies (SDKs, Boto3, etc.)
├── .env.example # Sample environment variables
├── config/ # Configuration settings and permissions
│ ├── settings.json
│ └── permissions_config.json
├── docs/ # Documentation and diagrams
│ ├── architecture_diagram.png
│ ├── data_flow.md
│ └── usage_guide.md
├── src/ # Main source code modules
│ ├── main.py # CLI interface for interaction
│ ├── ai_assistant/ # Amazon Q Business assistant logic
│ │ └── q_business.py
│ ├── dashboard/ # QuickSight dashboard rendering
│ │ └── quicksight_dashboard.py
│ ├── automation/ # Q Apps backend workflow builder
│ │ └── q_apps.py
│ ├── connectors/ # Data source connectors
│ │ ├── salesforce_connector.py
│ │ ├── sharepoint_connector.py
│ │ └── redshift_connector.py
│ └── utils/ # Helper utilities
│ ├── auth.py
│ ├── rag_helper.py
│ └── logging.py
├── tests/ # Unit tests
│ ├── test_q_business.py
│ ├── test_quicksight.py
│ └── test_q_apps.py
└── deployment/ # Cloud deployment infrastructure
├── cloudformation.yaml
├── lambda_functions/
│ └── q_handler.py
└── monitoring_dashboard.json
- Natural Language Querying with Amazon Q Business
- Dynamic BI Dashboarding using QuickSight
- App & Automation Creation via Q Apps
- Retrieval-Augmented Generation (RAG) for unstructured data
- Secure IAM-based access control
- Modular Python architecture with AWS integrations
- Clone the repository:
git clone https://github.com/aws-samples/QBusinessSuite-AWS.git cd QBusinessSuite-AWS - Configure environment variables:
cp .env.example .env # Fill in AWS credentials and region - Install Python dependencies:
pip install -r requirements.txt
- Run the assistant:
python src/main.py
- Role-based access managed via
permissions_config.json - Q Assistant respects IAM policies and QuickSight row-level security
- No customer data used for training underlying models
Run all unit tests:
pytest tests/Use deployment/cloudformation.yaml to deploy AWS Lambda and monitoring resources. Sample handler is available in lambda_functions/q_handler.py.
- Amazon Redshift
- Salesforce
- SharePoint
- S3
- CSV, Excel
- Slack, Confluence, Zendesk, GitHub
docs/data_flow.md– data flow and ingestiondocs/usage_guide.md– prompt examples and outputsdocs/architecture_diagram.png– high-level system architecture
For questions or AWS implementation consulting, contact: [email protected]
"""
""" Proprietary AWS License - For internal enterprise and AWS partner use only. """