A high-precision fixed-point math library for JavaScript and TypeScript, built around native bigint
for maximum performance and precision.
- Arbitrary precision fixed-point arithmetic
- Built on JavaScript's native
bigint
type - Comprehensive math operations
- No external dependencies
- TypeScript support
# Using npm
npm install @hastom/fixed-point
# Using yarn
yarn add @hastom/fixed-point
# Using pnpm
pnpm add @hastom/fixed-point
import { fpFromDecimal, fpFromInt } from '@hastom/fixed-point';
// Create fixed-point numbers with precision of 18 decimal places
const a = fpFromDecimal('123.456789', 18);
const b = fpFromDecimal('0.000000000000000001', 18); // Smallest possible value with precision of 18
const c = fpFromInt(100000000000000000000n, 18, 18); // Already scaled value with source and destination precision of 18
// Perform arithmetic operations
const sum = a.add(c);
console.log(sum.toDecimalString()); // '223.456789000000000000'
// Comparison
if (a.gt(b)) {
console.log('a is greater than b');
}
// Convert to decimal string
console.log(a.toDecimalString()); // '123.456789000000000000'
Creates a fixed-point number from a decimal value.
Parameters:
src
: The decimal value to convert (as a number, string, or bigint)dstPrecision
: The precision (number of decimal places) for the resulting FixedPoint
import { fpFromDecimal } from '@hastom/fixed-point';
// Create a fixed-point number with 18 decimal places
const num1 = fpFromDecimal('123.456789', 18);
// Create a fixed-point number with 10 decimal places
const num2 = fpFromDecimal('3.1415926535', 10);
// Can also use a number as input (but be aware of JS floating point limitations)
const num3 = fpFromDecimal(123.456, 18);
// Or use a bigint (which will be scaled by the precision)
const num4 = fpFromDecimal(123n, 18); // Equivalent to 123.000000000000000000
Creates a fixed-point number from an already scaled integer value.
Parameters:
src
: The integer value (in an already scaled form)srcPrecision
: The precision of the source integerdstPrecision
: The precision for the resulting FixedPoint
import { fpFromInt } from '@hastom/fixed-point';
// Create a fixed-point number from a scaled integer
// 100000000000000000000n represents 100.0 with 18 decimal places
const num1 = fpFromInt(100000000000000000000n, 18, 18);
// Convert from one precision to another
// 12345 represents 1.2345 with 4 decimal places, converting to 8 decimal places
const num2 = fpFromInt(12345, 4, 8); // Will be 1.23450000 with 8 decimal places
// Using a string for a very large number
const num3 = fpFromInt('123456789012345678901234567890', 18, 18);
Adds two fixed-point numbers.
const a = fpFromDecimal('10.5', 18);
const b = fpFromDecimal('20.3', 18);
const result = a.add(b);
console.log(result.toDecimalString()); // '30.800000000000000000'
Subtracts a value from the fixed-point number.
const a = fpFromDecimal('30.5', 18);
const b = fpFromDecimal('10.3', 18);
const result = a.sub(b);
console.log(result.toDecimalString()); // '20.200000000000000000'
Multiplies the fixed-point number by another value.
const a = fpFromDecimal('2.5', 18);
const b = fpFromDecimal('3', 18);
const result = a.mul(b);
console.log(result.toDecimalString()); // '7.500000000000000000'
Divides the fixed-point number by another value.
const a = fpFromDecimal('10', 18);
const b = fpFromDecimal('2.5', 18);
const result = a.div(b);
console.log(result.toDecimalString()); // '4.000000000000000000'
Negates the fixed-point number.
const a = fpFromDecimal('10.5', 18);
const result = a.neg();
console.log(result.toDecimalString()); // '-10.500000000000000000'
Returns the absolute value of the fixed-point number.
const a = fpFromDecimal('-10.5', 18);
const result = a.abs();
console.log(result.toDecimalString()); // '10.5'
Calculates the square root of the fixed-point number using the Newton-Raphson method.
// Perfect squares
const a = fpFromDecimal('25', 18);
const result = a.sqrt();
console.log(result.toDecimalString()); // '5.000000000000000000'
// Non-perfect squares
const b = fpFromDecimal('2', 18);
const result2 = b.sqrt();
console.log(result2.toDecimalString()); // '1.414213562373095049'
// Decimal numbers
const c = fpFromDecimal('0.25', 18);
const result3 = c.sqrt();
console.log(result3.toDecimalString()); // '0.500000000000000000'
// Error handling - negative numbers throw an error
const d = fpFromDecimal('-1', 18);
try {
d.sqrt(); // Throws: 'Cannot calculate square root of negative number'
} catch (error) {
console.error(error.message);
}
Note: The sqrt()
method preserves the precision of the original number and uses higher working precision internally for accurate calculations. There's also a squareRoot()
alias available.
Checks if the fixed-point number is equal to another value.
const a = fpFromDecimal('10.5', 18);
const b = fpFromDecimal('10.5', 18);
console.log(a.eq(b)); // true
Checks if the fixed-point number is greater than another value.
const a = fpFromDecimal('10.5', 18);
const b = fpFromDecimal('5.2', 18);
console.log(a.gt(b)); // true
Checks if the fixed-point number is greater than or equal to another value.
const a = fpFromDecimal('10.5', 18);
const b = fpFromDecimal('10.5', 18);
console.log(a.gte(b)); // true
Checks if the fixed-point number is less than another value.
const a = fpFromDecimal('5.2', 18);
const b = fpFromDecimal('10.5', 18);
console.log(a.lt(b)); // true
Checks if the fixed-point number is less than or equal to another value.
const a = fpFromDecimal('10.5', 18);
const b = fpFromDecimal('10.5', 18);
console.log(a.lte(b)); // true
Returns the base fixed-point representation (the internal scaled value as a string).
const a = fpFromDecimal('10.5', 18);
console.log(a.toString()); // '10500000000000000000' (for precision of 18)
Converts the fixed-point number to a decimal string.
const a = fpFromDecimal('10.5', 18);
console.log(a.toDecimalString()); // '10.500000000000000000'
Converts the fixed-point number to a JavaScript number.
const a = fpFromDecimal('10.54321', 18);
console.log(a.toDecimal()); // 10.54321
Checks if the fixed-point number is zero.
const a = fpFromDecimal('0', 18);
console.log(a.isZero()); // true
Checks if the fixed-point number is positive.
const a = fpFromDecimal('10.5', 18);
console.log(a.isPositive()); // true
Checks if the fixed-point number is negative.
const a = fpFromDecimal('-10.5', 18);
console.log(a.isNegative()); // true
Converts the fixed-point number to a different precision, returning a new FixedPoint instance.
import { Rounding } from '@hastom/fixed-point';
const a = fpFromDecimal('10.54321', 18);
const result = a.toPrecision(2); // Default rounding is ROUND_DOWN
console.log(result.toDecimalString()); // '10.54'
// With explicit rounding mode
const rounded = a.toPrecision(2, Rounding.ROUND_HALF_UP);
console.log(rounded.toDecimalString()); // '10.54'
// Increase precision (no rounding needed)
const expanded = a.toPrecision(20);
console.log(expanded.toDecimalString()); // '10.54321000000000000000'
Modifies the precision of the current FixedPoint instance in place.
import { Rounding } from '@hastom/fixed-point';
const a = fpFromDecimal('10.987654', 18);
console.log(a.toDecimalString()); // '10.987654000000000000'
// Reduce precision with default rounding (ROUND_DOWN)
a.setPrecision(3);
console.log(a.toDecimalString()); // '10.987'
// Create another instance to show different rounding
const b = fpFromDecimal('10.987654', 18);
b.setPrecision(3, Rounding.ROUND_HALF_UP);
console.log(b.toDecimalString()); // '10.988'
// Increase precision
b.setPrecision(10);
console.log(b.toDecimalString()); // '10.9880000000'
Rounds the fixed-point number to the nearest integer using the specified rounding mode.
import { Rounding } from '@hastom/fixed-point';
const a = fpFromDecimal('10.7', 18);
const b = fpFromDecimal('-10.7', 18);
const c = fpFromDecimal('10.5', 18);
const d = fpFromDecimal('-10.5', 18);
// ROUND_UP - Away from zero
console.log(a.round(Rounding.ROUND_UP).toDecimalString()); // '11.000000000000000000'
console.log(b.round(Rounding.ROUND_UP).toDecimalString()); // '-11.000000000000000000'
// ROUND_DOWN - Towards zero (default)
console.log(a.round(Rounding.ROUND_DOWN).toDecimalString()); // '10.000000000000000000'
console.log(b.round(Rounding.ROUND_DOWN).toDecimalString()); // '-10.000000000000000000'
// ROUND_CEIL - Towards positive infinity
console.log(a.round(Rounding.ROUND_CEIL).toDecimalString()); // '11.000000000000000000'
console.log(b.round(Rounding.ROUND_CEIL).toDecimalString()); // '-10.000000000000000000'
// ROUND_FLOOR - Towards negative infinity
console.log(a.round(Rounding.ROUND_FLOOR).toDecimalString()); // '10.000000000000000000'
console.log(b.round(Rounding.ROUND_FLOOR).toDecimalString()); // '-11.000000000000000000'
// ROUND_HALF_UP - If halfway (.5), rounds away from zero
console.log(c.round(Rounding.ROUND_HALF_UP).toDecimalString()); // '11.000000000000000000'
console.log(d.round(Rounding.ROUND_HALF_UP).toDecimalString()); // '-11.000000000000000000'
// ROUND_HALF_DOWN - If halfway (.5), rounds towards zero
console.log(c.round(Rounding.ROUND_HALF_DOWN).toDecimalString()); // '10.000000000000000000'
console.log(d.round(Rounding.ROUND_HALF_DOWN).toDecimalString()); // '-10.000000000000000000'
// ROUND_HALF_EVEN - If halfway (.5), rounds to even neighbor (banker's rounding)
const e = fpFromDecimal('2.5', 18);
const f = fpFromDecimal('3.5', 18);
console.log(e.round(Rounding.ROUND_HALF_EVEN).toDecimalString()); // '2.000000000000000000'
console.log(f.round(Rounding.ROUND_HALF_EVEN).toDecimalString()); // '4.000000000000000000'
Rounds down to the nearest integer (shorthand for round(Rounding.ROUND_FLOOR)
).
const a = fpFromDecimal('10.7', 18);
const b = fpFromDecimal('-10.3', 18);
console.log(a.floor().toDecimalString()); // '10.000000000000000000'
console.log(b.floor().toDecimalString()); // '-11.000000000000000000'
Rounds up to the nearest integer (shorthand for round(Rounding.ROUND_CEIL)
).
const a = fpFromDecimal('10.3', 18);
const b = fpFromDecimal('-10.7', 18);
console.log(a.ceil().toDecimalString()); // '11.000000000000000000'
console.log(b.ceil().toDecimalString()); // '-10.000000000000000000'
The library supports various rounding modes through the Rounding
enum:
ROUND_UP
: Rounds away from zeroROUND_DOWN
: Rounds towards zero (truncation)ROUND_CEIL
: Rounds towards positive infinityROUND_FLOOR
: Rounds towards negative infinityROUND_HALF_UP
: Rounds to nearest neighbor, halfway cases away from zeroROUND_HALF_DOWN
: Rounds to nearest neighbor, halfway cases towards zeroROUND_HALF_EVEN
: Rounds to nearest neighbor, halfway cases to even neighbor (banker's rounding)ROUND_HALF_CEIL
: Rounds to nearest neighbor, halfway cases towards positive infinityROUND_HALF_FLOOR
: Rounds to nearest neighbor, halfway cases towards negative infinity