Documentation: https://googleapis.github.io/python-genai/
Google Gen AI Python SDK provides an interface for developers to integrate Google's generative models into their Python applications. It supports the Gemini Developer API and Vertex AI APIs.
pip install google-genai
from google import genai
from google.genai import types
Please run one of the following code blocks to create a client for different services (Gemini Developer API or Vertex AI).
from google import genai
# Only run this block for Gemini Developer API
client = genai.Client(api_key='GEMINI_API_KEY')
from google import genai
# Only run this block for Vertex AI API
client = genai.Client(
vertexai=True, project='your-project-id', location='us-central1'
)
(Optional) Using environment variables:
You can create a client by configuring the necessary environment variables. Configuration setup instructions depends on whether you're using the Gemini Developer API or the Gemini API in Vertex AI.
Gemini Developer API: Set GOOGLE_API_KEY
as shown below:
export GOOGLE_API_KEY='your-api-key'
Gemini API on Vertex AI: Set GOOGLE_GENAI_USE_VERTEXAI
, GOOGLE_CLOUD_PROJECT
and GOOGLE_CLOUD_LOCATION
, as shown below:
export GOOGLE_GENAI_USE_VERTEXAI=true
export GOOGLE_CLOUD_PROJECT='your-project-id'
export GOOGLE_CLOUD_LOCATION='us-central1'
from google import genai
client = genai.Client()
By default, the SDK uses the beta API endpoints provided by Google to support
preview features in the APIs. The stable API endpoints can be selected by
setting the API version to v1
.
To set the API version use http_options
. For example, to set the API version
to v1
for Vertex AI:
from google import genai
from google.genai import types
client = genai.Client(
vertexai=True,
project='your-project-id',
location='us-central1',
http_options=types.HttpOptions(api_version='v1')
)
To set the API version to v1alpha
for the Gemini Developer API:
from google import genai
from google.genai import types
client = genai.Client(
api_key='GEMINI_API_KEY',
http_options=types.HttpOptions(api_version='v1alpha')
)
Parameter types can be specified as either dictionaries(TypedDict
) or
Pydantic Models.
Pydantic model types are available in the types
module.
The client.models
modules exposes model inferencing and model getters.
See the 'Create a client' section above to initialize a client.
response = client.models.generate_content(
model='gemini-2.0-flash-001', contents='Why is the sky blue?'
)
print(response.text)
download the file in console.
!wget -q https://storage.googleapis.com/generativeai-downloads/data/a11.txt
python code.
file = client.files.upload(file='a11.txt')
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents=['Could you summarize this file?', file]
)
print(response.text)
The SDK always converts the inputs to the contents
argument into
list[types.Content]
.
The following shows some common ways to provide your inputs.
This is the canonical way to provide contents, SDK will not do any conversion.
from google.genai import types
contents = types.Content(
role='user',
parts=[types.Part.from_text(text='Why is the sky blue?')]
)
SDK converts this to
[
types.Content(
role='user',
parts=[types.Part.from_text(text='Why is the sky blue?')]
)
]
contents='Why is the sky blue?'
The SDK will assume this is a text part, and it converts this into the following:
[
types.UserContent(
parts=[
types.Part.from_text(text='Why is the sky blue?')
]
)
]
Where a types.UserContent
is a subclass of types.Content
, it sets the
role
field to be user
.
contents=['Why is the sky blue?', 'Why is the cloud white?']
The SDK assumes these are 2 text parts, it converts this into a single content, like the following:
[
types.UserContent(
parts=[
types.Part.from_text(text='Why is the sky blue?'),
types.Part.from_text(text='Why is the cloud white?'),
]
)
]
Where a types.UserContent
is a subclass of types.Content
, the
role
field in types.UserContent
is fixed to be user
.
from google.genai import types
contents = types.Part.from_function_call(
name='get_weather_by_location',
args={'location': 'Boston'}
)
The SDK converts a function call part to a content with a model
role:
[
types.ModelContent(
parts=[
types.Part.from_function_call(
name='get_weather_by_location',
args={'location': 'Boston'}
)
]
)
]
Where a types.ModelContent
is a subclass of types.Content
, the
role
field in types.ModelContent
is fixed to be model
.
from google.genai import types
contents = [
types.Part.from_function_call(
name='get_weather_by_location',
args={'location': 'Boston'}
),
types.Part.from_function_call(
name='get_weather_by_location',
args={'location': 'New York'}
),
]
The SDK converts a list of function call parts to the a content with a model
role:
[
types.ModelContent(
parts=[
types.Part.from_function_call(
name='get_weather_by_location',
args={'location': 'Boston'}
),
types.Part.from_function_call(
name='get_weather_by_location',
args={'location': 'New York'}
)
]
)
]
Where a types.ModelContent
is a subclass of types.Content
, the
role
field in types.ModelContent
is fixed to be model
.
from google.genai import types
contents = types.Part.from_uri(
file_uri: 'gs://generativeai-downloads/images/scones.jpg',
mime_type: 'image/jpeg',
)
The SDK converts all non function call parts into a content with a user
role.
[
types.UserContent(parts=[
types.Part.from_uri(
file_uri: 'gs://generativeai-downloads/images/scones.jpg',
mime_type: 'image/jpeg',
)
])
]
from google.genai import types
contents = [
types.Part.from_text('What is this image about?'),
types.Part.from_uri(
file_uri: 'gs://generativeai-downloads/images/scones.jpg',
mime_type: 'image/jpeg',
)
]
The SDK will convert the list of parts into a content with a user
role
[
types.UserContent(
parts=[
types.Part.from_text('What is this image about?'),
types.Part.from_uri(
file_uri: 'gs://generativeai-downloads/images/scones.jpg',
mime_type: 'image/jpeg',
)
]
)
]
You can also provide a list of types.ContentUnion
. The SDK leaves items of
types.Content
as is, it groups consecutive non function call parts into a
single types.UserContent
, and it groups consecutive function call parts into
a single types.ModelContent
.
If you put a list within a list, the inner list can only contain
types.PartUnion
items. The SDK will convert the inner list into a single
types.UserContent
.
The output of the model can be influenced by several optional settings
available in generate_content's config parameter. For example, increasing
max_output_tokens
is essential for longer model responses. To make a model more
deterministic, lowering the temperature
parameter reduces randomness, with
values near 0 minimizing variability. Capabilities and parameter defaults for
each model is shown in the
Vertex AI docs
and Gemini API docs respectively.
from google.genai import types
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='high',
config=types.GenerateContentConfig(
system_instruction='I say high, you say low',
max_output_tokens=3,
temperature=0.3,
),
)
print(response.text)
All API methods support Pydantic types for parameters as well as
dictionaries. You can get the type from google.genai.types
.
from google.genai import types
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents=types.Part.from_text(text='Why is the sky blue?'),
config=types.GenerateContentConfig(
temperature=0,
top_p=0.95,
top_k=20,
candidate_count=1,
seed=5,
max_output_tokens=100,
stop_sequences=['STOP!'],
presence_penalty=0.0,
frequency_penalty=0.0,
),
)
print(response.text)
To retrieve tuned models, see list tuned models.
for model in client.models.list():
print(model)
pager = client.models.list(config={'page_size': 10})
print(pager.page_size)
print(pager[0])
pager.next_page()
print(pager[0])
async for job in await client.aio.models.list():
print(job)
async_pager = await client.aio.models.list(config={'page_size': 10})
print(async_pager.page_size)
print(async_pager[0])
await async_pager.next_page()
print(async_pager[0])
from google.genai import types
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='Say something bad.',
config=types.GenerateContentConfig(
safety_settings=[
types.SafetySetting(
category='HARM_CATEGORY_HATE_SPEECH',
threshold='BLOCK_ONLY_HIGH',
)
]
),
)
print(response.text)
You can pass a Python function directly and it will be automatically called and responded by default.
from google.genai import types
def get_current_weather(location: str) -> str:
"""Returns the current weather.
Args:
location: The city and state, e.g. San Francisco, CA
"""
return 'sunny'
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='What is the weather like in Boston?',
config=types.GenerateContentConfig(tools=[get_current_weather]),
)
print(response.text)
If you pass in a python function as a tool directly, and do not want automatic function calling, you can disable automatic function calling as follows:
from google.genai import types
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='What is the weather like in Boston?',
config=types.GenerateContentConfig(
tools=[get_current_weather],
automatic_function_calling=types.AutomaticFunctionCallingConfig(
disable=True
),
),
)
With automatic function calling disabled, you will get a list of function call parts in the response:
function_calls: Optional[List[types.FunctionCall]] = response.function_calls
If you don't want to use the automatic function support, you can manually declare the function and invoke it.
The following example shows how to declare a function and pass it as a tool. Then you will receive a function call part in the response.
from google.genai import types
function = types.FunctionDeclaration(
name='get_current_weather',
description='Get the current weather in a given location',
parameters=types.Schema(
type='OBJECT',
properties={
'location': types.Schema(
type='STRING',
description='The city and state, e.g. San Francisco, CA',
),
},
required=['location'],
),
)
tool = types.Tool(function_declarations=[function])
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='What is the weather like in Boston?',
config=types.GenerateContentConfig(tools=[tool]),
)
print(response.function_calls[0])
After you receive the function call part from the model, you can invoke the function and get the function response. And then you can pass the function response to the model. The following example shows how to do it for a simple function invocation.
from google.genai import types
user_prompt_content = types.Content(
role='user',
parts=[types.Part.from_text(text='What is the weather like in Boston?')],
)
function_call_part = response.function_calls[0]
function_call_content = response.candidates[0].content
try:
function_result = get_current_weather(
**function_call_part.function_call.args
)
function_response = {'result': function_result}
except (
Exception
) as e: # instead of raising the exception, you can let the model handle it
function_response = {'error': str(e)}
function_response_part = types.Part.from_function_response(
name=function_call_part.name,
response=function_response,
)
function_response_content = types.Content(
role='tool', parts=[function_response_part]
)
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents=[
user_prompt_content,
function_call_content,
function_response_content,
],
config=types.GenerateContentConfig(
tools=[tool],
),
)
print(response.text)
If you configure function calling mode to be ANY
, then the model will always
return function call parts. If you also pass a python function as a tool, by
default the SDK will perform automatic function calling until the remote calls exceed the
maximum remote call for automatic function calling (default to 10 times).
If you'd like to disable automatic function calling in ANY
mode:
from google.genai import types
def get_current_weather(location: str) -> str:
"""Returns the current weather.
Args:
location: The city and state, e.g. San Francisco, CA
"""
return "sunny"
response = client.models.generate_content(
model="gemini-2.0-flash-001",
contents="What is the weather like in Boston?",
config=types.GenerateContentConfig(
tools=[get_current_weather],
automatic_function_calling=types.AutomaticFunctionCallingConfig(
disable=True
),
tool_config=types.ToolConfig(
function_calling_config=types.FunctionCallingConfig(mode='ANY')
),
),
)
If you'd like to set x
number of automatic function call turns, you can
configure the maximum remote calls to be x + 1
.
Assuming you prefer 1
turn for automatic function calling.
from google.genai import types
def get_current_weather(location: str) -> str:
"""Returns the current weather.
Args:
location: The city and state, e.g. San Francisco, CA
"""
return "sunny"
response = client.models.generate_content(
model="gemini-2.0-flash-001",
contents="What is the weather like in Boston?",
config=types.GenerateContentConfig(
tools=[get_current_weather],
automatic_function_calling=types.AutomaticFunctionCallingConfig(
maximum_remote_calls=2
),
tool_config=types.ToolConfig(
function_calling_config=types.FunctionCallingConfig(mode='ANY')
),
),
)
However you define your schema, don't duplicate it in your input prompt, including by giving examples of expected JSON output. If you do, the generated output might be lower in quality.
Schemas can be provided as Pydantic Models.
from pydantic import BaseModel
from google.genai import types
class CountryInfo(BaseModel):
name: str
population: int
capital: str
continent: str
gdp: int
official_language: str
total_area_sq_mi: int
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='Give me information for the United States.',
config=types.GenerateContentConfig(
response_mime_type='application/json',
response_schema=CountryInfo,
),
)
print(response.text)
from google.genai import types
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='Give me information for the United States.',
config=types.GenerateContentConfig(
response_mime_type='application/json',
response_schema={
'required': [
'name',
'population',
'capital',
'continent',
'gdp',
'official_language',
'total_area_sq_mi',
],
'properties': {
'name': {'type': 'STRING'},
'population': {'type': 'INTEGER'},
'capital': {'type': 'STRING'},
'continent': {'type': 'STRING'},
'gdp': {'type': 'INTEGER'},
'official_language': {'type': 'STRING'},
'total_area_sq_mi': {'type': 'INTEGER'},
},
'type': 'OBJECT',
},
),
)
print(response.text)
You can set response_mime_type to 'text/x.enum' to return one of those enum values as the response.
class InstrumentEnum(Enum):
PERCUSSION = 'Percussion'
STRING = 'String'
WOODWIND = 'Woodwind'
BRASS = 'Brass'
KEYBOARD = 'Keyboard'
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='What instrument plays multiple notes at once?',
config={
'response_mime_type': 'text/x.enum',
'response_schema': InstrumentEnum,
},
)
print(response.text)
You can also set response_mime_type to 'application/json', the response will be identical but in quotes.
from enum import Enum
class InstrumentEnum(Enum):
PERCUSSION = 'Percussion'
STRING = 'String'
WOODWIND = 'Woodwind'
BRASS = 'Brass'
KEYBOARD = 'Keyboard'
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='What instrument plays multiple notes at once?',
config={
'response_mime_type': 'application/json',
'response_schema': InstrumentEnum,
},
)
print(response.text)
Generate content in a streaming format so that the model outputs streams back to you, rather than being returned as one chunk.
for chunk in client.models.generate_content_stream(
model='gemini-2.0-flash-001', contents='Tell me a story in 300 words.'
):
print(chunk.text, end='')
If your image is stored in Google Cloud Storage,
you can use the from_uri
class method to create a Part
object.
from google.genai import types
for chunk in client.models.generate_content_stream(
model='gemini-2.0-flash-001',
contents=[
'What is this image about?',
types.Part.from_uri(
file_uri='gs://generativeai-downloads/images/scones.jpg',
mime_type='image/jpeg',
),
],
):
print(chunk.text, end='')
If your image is stored in your local file system, you can read it in as bytes
data and use the from_bytes
class method to create a Part
object.
from google.genai import types
YOUR_IMAGE_PATH = 'your_image_path'
YOUR_IMAGE_MIME_TYPE = 'your_image_mime_type'
with open(YOUR_IMAGE_PATH, 'rb') as f:
image_bytes = f.read()
for chunk in client.models.generate_content_stream(
model='gemini-2.0-flash-001',
contents=[
'What is this image about?',
types.Part.from_bytes(data=image_bytes, mime_type=YOUR_IMAGE_MIME_TYPE),
],
):
print(chunk.text, end='')
client.aio
exposes all the analogous async
methods
that are available on client
. Note that it applies to all the modules.
For example, client.aio.models.generate_content
is the async
version
of client.models.generate_content
response = await client.aio.models.generate_content(
model='gemini-2.0-flash-001', contents='Tell me a story in 300 words.'
)
print(response.text)
async for chunk in await client.aio.models.generate_content_stream(
model='gemini-2.0-flash-001', contents='Tell me a story in 300 words.'
):
print(chunk.text, end='')
response = client.models.count_tokens(
model='gemini-2.0-flash-001',
contents='why is the sky blue?',
)
print(response)
Compute tokens is only supported in Vertex AI.
response = client.models.compute_tokens(
model='gemini-2.0-flash-001',
contents='why is the sky blue?',
)
print(response)
response = await client.aio.models.count_tokens(
model='gemini-2.0-flash-001',
contents='why is the sky blue?',
)
print(response)
response = client.models.embed_content(
model='text-embedding-004',
contents='why is the sky blue?',
)
print(response)
from google.genai import types
# multiple contents with config
response = client.models.embed_content(
model='text-embedding-004',
contents=['why is the sky blue?', 'What is your age?'],
config=types.EmbedContentConfig(output_dimensionality=10),
)
print(response)
Support for generate images in Gemini Developer API is behind an allowlist
from google.genai import types
# Generate Image
response1 = client.models.generate_images(
model='imagen-3.0-generate-002',
prompt='An umbrella in the foreground, and a rainy night sky in the background',
config=types.GenerateImagesConfig(
number_of_images=1,
include_rai_reason=True,
output_mime_type='image/jpeg',
),
)
response1.generated_images[0].image.show()
Upscale image is only supported in Vertex AI.
from google.genai import types
# Upscale the generated image from above
response2 = client.models.upscale_image(
model='imagen-3.0-generate-001',
image=response1.generated_images[0].image,
upscale_factor='x2',
config=types.UpscaleImageConfig(
include_rai_reason=True,
output_mime_type='image/jpeg',
),
)
response2.generated_images[0].image.show()
Edit image uses a separate model from generate and upscale.
Edit image is only supported in Vertex AI.
# Edit the generated image from above
from google.genai import types
from google.genai.types import RawReferenceImage, MaskReferenceImage
raw_ref_image = RawReferenceImage(
reference_id=1,
reference_image=response1.generated_images[0].image,
)
# Model computes a mask of the background
mask_ref_image = MaskReferenceImage(
reference_id=2,
config=types.MaskReferenceConfig(
mask_mode='MASK_MODE_BACKGROUND',
mask_dilation=0,
),
)
response3 = client.models.edit_image(
model='imagen-3.0-capability-001',
prompt='Sunlight and clear sky',
reference_images=[raw_ref_image, mask_ref_image],
config=types.EditImageConfig(
edit_mode='EDIT_MODE_INPAINT_INSERTION',
number_of_images=1,
include_rai_reason=True,
output_mime_type='image/jpeg',
),
)
response3.generated_images[0].image.show()
Support for generate videos in Vertex and Gemini Developer API is behind an allowlist
from google.genai import types
# Create operation
operation = client.models.generate_videos(
model='veo-2.0-generate-001',
prompt='A neon hologram of a cat driving at top speed',
config=types.GenerateVideosConfig(
number_of_videos=1,
fps=24,
duration_seconds=5,
enhance_prompt=True,
),
)
# Poll operation
while not operation.done:
time.sleep(20)
operation = client.operations.get(operation)
video = operation.result.generated_videos[0].video
video.show()
Create a chat session to start a multi-turn conversations with the model. Then,
use chat.send_message
function multiple times within the same chat session so
that it can reflect on its previous responses (i.e., engage in an ongoing
conversation). See the 'Create a client' section above to initialize a client.
chat = client.chats.create(model='gemini-2.0-flash-001')
response = chat.send_message('tell me a story')
print(response.text)
response = chat.send_message('summarize the story you told me in 1 sentence')
print(response.text)
chat = client.chats.create(model='gemini-2.0-flash-001')
for chunk in chat.send_message_stream('tell me a story'):
print(chunk.text)
chat = client.aio.chats.create(model='gemini-2.0-flash-001')
response = await chat.send_message('tell me a story')
print(response.text)
chat = client.aio.chats.create(model='gemini-2.0-flash-001')
async for chunk in await chat.send_message_stream('tell me a story'):
print(chunk.text)
Files are only supported in Gemini Developer API. See the 'Create a client' section above to initialize a client.
!gsutil cp gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf .
!gsutil cp gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf .
file1 = client.files.upload(file='2312.11805v3.pdf')
file2 = client.files.upload(file='2403.05530.pdf')
print(file1)
print(file2)
file1 = client.files.upload(file='2312.11805v3.pdf')
file_info = client.files.get(name=file1.name)
file3 = client.files.upload(file='2312.11805v3.pdf')
client.files.delete(name=file3.name)
client.caches
contains the control plane APIs for cached content. See the
'Create a client' section above to initialize a client.
from google.genai import types
if client.vertexai:
file_uris = [
'gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf',
'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',
]
else:
file_uris = [file1.uri, file2.uri]
cached_content = client.caches.create(
model='gemini-2.0-flash-001',
config=types.CreateCachedContentConfig(
contents=[
types.Content(
role='user',
parts=[
types.Part.from_uri(
file_uri=file_uris[0], mime_type='application/pdf'
),
types.Part.from_uri(
file_uri=file_uris[1],
mime_type='application/pdf',
),
],
)
],
system_instruction='What is the sum of the two pdfs?',
display_name='test cache',
ttl='3600s',
),
)
cached_content = client.caches.get(name=cached_content.name)
from google.genai import types
response = client.models.generate_content(
model='gemini-2.0-flash-001',
contents='Summarize the pdfs',
config=types.GenerateContentConfig(
cached_content=cached_content.name,
),
)
print(response.text)
client.tunings
contains tuning job APIs and supports supervised fine
tuning through tune
. See the 'Create a client' section above to initialize a
client.
- Vertex AI supports tuning from GCS source
- Gemini Developer API supports tuning from inline examples
from google.genai import types
if client.vertexai:
model = 'gemini-2.0-flash-001'
training_dataset = types.TuningDataset(
gcs_uri='gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl',
)
else:
model = 'models/gemini-2.0-flash-001'
training_dataset = types.TuningDataset(
examples=[
types.TuningExample(
text_input=f'Input text {i}',
output=f'Output text {i}',
)
for i in range(5)
],
)
from google.genai import types
tuning_job = client.tunings.tune(
base_model=model,
training_dataset=training_dataset,
config=types.CreateTuningJobConfig(
epoch_count=1, tuned_model_display_name='test_dataset_examples model'
),
)
print(tuning_job)
tuning_job = client.tunings.get(name=tuning_job.name)
print(tuning_job)
import time
running_states = set(
[
'JOB_STATE_PENDING',
'JOB_STATE_RUNNING',
]
)
while tuning_job.state in running_states:
print(tuning_job.state)
tuning_job = client.tunings.get(name=tuning_job.name)
time.sleep(10)
response = client.models.generate_content(
model=tuning_job.tuned_model.endpoint,
contents='why is the sky blue?',
)
print(response.text)
tuned_model = client.models.get(model=tuning_job.tuned_model.model)
print(tuned_model)
To retrieve base models, see list base models.
for model in client.models.list(config={'page_size': 10, 'query_base': False}):
print(model)
pager = client.models.list(config={'page_size': 10, 'query_base': False})
print(pager.page_size)
print(pager[0])
pager.next_page()
print(pager[0])
async for job in await client.aio.models.list(config={'page_size': 10, 'query_base': False}):
print(job)
async_pager = await client.aio.models.list(config={'page_size': 10, 'query_base': False})
print(async_pager.page_size)
print(async_pager[0])
await async_pager.next_page()
print(async_pager[0])
from google.genai import types
model = pager[0]
model = client.models.update(
model=model.name,
config=types.UpdateModelConfig(
display_name='my tuned model', description='my tuned model description'
),
)
print(model)
for job in client.tunings.list(config={'page_size': 10}):
print(job)
pager = client.tunings.list(config={'page_size': 10})
print(pager.page_size)
print(pager[0])
pager.next_page()
print(pager[0])
async for job in await client.aio.tunings.list(config={'page_size': 10}):
print(job)
async_pager = await client.aio.tunings.list(config={'page_size': 10})
print(async_pager.page_size)
print(async_pager[0])
await async_pager.next_page()
print(async_pager[0])
Only supported in Vertex AI. See the 'Create a client' section above to initialize a client.
# Specify model and source file only, destination and job display name will be auto-populated
job = client.batches.create(
model='gemini-2.0-flash-001',
src='bq://my-project.my-dataset.my-table',
)
job
# Get a job by name
job = client.batches.get(name=job.name)
job.state
completed_states = set(
[
'JOB_STATE_SUCCEEDED',
'JOB_STATE_FAILED',
'JOB_STATE_CANCELLED',
'JOB_STATE_PAUSED',
]
)
while job.state not in completed_states:
print(job.state)
job = client.batches.get(name=job.name)
time.sleep(30)
job
for job in client.batches.list(config=types.ListBatchJobsConfig(page_size=10)):
print(job)
pager = client.batches.list(config=types.ListBatchJobsConfig(page_size=10))
print(pager.page_size)
print(pager[0])
pager.next_page()
print(pager[0])
async for job in await client.aio.batches.list(
config=types.ListBatchJobsConfig(page_size=10)
):
print(job)
async_pager = await client.aio.batches.list(
config=types.ListBatchJobsConfig(page_size=10)
)
print(async_pager.page_size)
print(async_pager[0])
await async_pager.next_page()
print(async_pager[0])
# Delete the job resource
delete_job = client.batches.delete(name=job.name)
delete_job
To handle errors raised by the model service, the SDK provides this APIError class.
from google.genai import errors
try:
client.models.generate_content(
model="invalid-model-name",
contents="What is your name?",
)
except errors.APIError as e:
print(e.code) # 404
print(e.message)