Skip to content

firstock/proj_sponge_bicycle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Setting on Windows 7,10

  1. anaconda
  2. pip install selenium

Run

at this directory> cmd> gogo

Report

seoulBicycleRentCount_predict.pptx

Summary

best model: Random Forest, Gradient Boosting

  • RF> ntree= 5000
  • GB> distribution= gaussian, n.trees= 150, interaction.depth= 3, shrinkage= 0.1, n.minobsinode= 10

weather missing value> knn imputation

y~X > non-linear

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •