Skip to content

epicgamer17/rl-research

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RL recreations and implementation from papers

Includes:

  1. DQN
  2. Double DQN
  3. Prioritized Experience Replay DQN
  4. Deuling DQN
  5. Noisy DQN
  6. N Step DQN
  7. Categorical DQN
  8. Rainbow DQN These can be used by passing in the correct config into RainbowAgent (You can also mix and match these by creating your own configs)
  9. Ape-X
  10. Neural Ficticious Self Play (NFSP) NFSP allows traditional RL agents to work well on imperfect information games and multi agent environments. It also can be used to train Rainbow on multi agent games by passing in an anticipatory param of 1.0, this should really only be used for deterministic games though, like Tic Tac Toe or Connect 4.
  11. PPO
  12. AlphaZero
  13. MuZero

Envs we have implimented:

  1. Tic Tac Toe
  2. CartPole
  3. Connect 4
  4. Mississippi Marbles
  5. LeDuc Holdem

Some envs we want to test in the future:

  1. Chess
  2. Catan
  3. Go
  4. Shogi
  5. Risk
  6. Monopoly
  7. Starcraft
  8. Clash Royale
  9. RL Card (Card Games): https://rlcard.org/ https://github.com/datamllab/rlcard Black Jack Leduc Hold'em Limit Texas Hold'em Dou Dizhu Simple Dou Dizhu Mahjong No-limit Texas Hold'em UNO Gin Rummy Bridge
  10. Eclipse Sumo (Traffic Simulation): https://eclipse.dev/sumo/about/ https://github.com/AndreaVidali/Deep-QLearning-Agent-for-Traffic-Signal-Control
  11. Any Trading (Simple): https://github.com/AminHP/gym-anytrading
  12. MTSIM Trading (Complex): https://github.com/AminHP/gym-mtsim
  13. TensorTrade: https://www.tensortrade.org/en/latest/examples/train_and_evaluate_using_ray.html https://github.com/tensortrade-org/tensortrade?tab=readme-ov-file
  14. Atari 57: https://gymnasium.farama.org/environments/atari/
  15. MineCraft: https://minerl.io/
  16. Racing: https://aws.amazon.com/deepracer/
  17. Robo Sumo: https://github.com/openai/robosumo
  18. Unity ML Agents: https://github.com/Unity-Technologies/ml-agents
  19. Multi Agent Emergence Environements: https://github.com/openai/multi-agent-emergence-environments/tree/master/examples
  20. All Open AI Gym Environments: https://gymnasium.farama.org/ Classic Control Box 2D Toy Text MuJoCo Atari
  21. All Open Spiel Environments: https://github.com/google-deepmind/open_spiel?tab=readme-ov-file More at: https://github.com/clvrai/awesome-rl-envs?tab=readme-ov-file

Tournaments/Challenges:

  1. Battle Snake: https://play.battlesnake.com/
  2. _Terminal: https://terminal.c1games.com/

  3. Lux AI: https://www.kaggle.com/c/lux-ai-2021
  4. Russian AI Cup: https://russianaicup.ru/
  5. Coliseum: https://www.coliseum.ai/
  6. Code Cup: https://www.codecup.nl/intro.php
  7. IEEE Conference on Games: https://2023.ieee-cog.org/

Some useful papers:

  1. Muzero: https://arxiv.org/pdf/1911.08265.pdf
  2. Rainbow: https://arxiv.org/pdf/1710.02298.pdf
  3. Revisiting Rainbow: https://arxiv.org/pdf/2011.14826.pdf
  4. AlphaZero: https://arxiv.org/pdf/1712.01815.pdf
  5. Policy Value Alignment: https://arxiv.org/pdf/2301.11857.pdf
  6. A Disciplined Approach to Hyperparameters Part 1: https://arxiv.org/pdf/1803.09820.pdf
  7. High Performance Algorithms for Turn Based Games Using Deep Learning: https://www.scitepress.org/Papers/2020/89561/89561.pdf
  8. KataGo: https://arxiv.org/pdf/2008.10080.pdf https://github.com/lightvector/KataGo/tree/master
  9. Never Give Up: https://arxiv.org/pdf/2002.06038.pdf
  10. Agent 57: https://arxiv.org/pdf/2003.13350.pdf
  11. MEME: https://arxiv.org/pdf/2003.13350.pdf
  12. GDI: https://arxiv.org/pdf/2106.06232.pdf <- not used but interesting idea
  13. Prioritized Experience Replay: https://arxiv.org/pdf/1511.05952.pdf
  14. PPO: https://arxiv.org/pdf/1707.06347.pdf
  15. What Matters in On Policy RL: https://arxiv.org/pdf/2006.05990.pdf
  16. Population Based Training: https://arxiv.org/pdf/1711.09846.pdf <- not used but interesting idea for the future
  17. RL Card: https://arxiv.org/abs/1910.04376
  18. NFSP https://arxiv.org/pdf/1603.01121
  19. CFR: https://proceedings.neurips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf 20: Deep CFR: https://arxiv.org/pdf/1811.00164

To Look Into:

  1. Muesli
  2. DreamerV3
  3. R2D2
  4. NGU
  5. Agent 57
  6. CFR (For imperfect information)
  7. DeepCFR (For imperfect information)
  8. StarCraft League
  9. Meta Learning
  10. World Models

About

some rl research and paper recreations

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 5