-
Notifications
You must be signed in to change notification settings - Fork 6
Stats
Miguel Amigot edited this page May 3, 2016
·
4 revisions
Loss function of the model using 50 epochs. Download the weights to model/data/phonemes2text/
and test it using the following:
from model import phonemes2text
def test_phonemes2text():
# not necessary to train if we have the weights in that directory already
#phonemes2text.train(summarize=False, data_limit=None)
phonemes2text.test()
if __name__ == '__main__':
test_phonemes2text()
Epoch 1/50
39826/39826 [==============================] - 186s - loss: 5.6256
Epoch 2/50
39826/39826 [==============================] - 193s - loss: 4.2672
Epoch 3/50
39826/39826 [==============================] - 194s - loss: 3.5249
Epoch 4/50
39826/39826 [==============================] - 192s - loss: 2.9762
Epoch 5/50
39826/39826 [==============================] - 3168s - loss: 2.5636
Epoch 6/50
39826/39826 [==============================] - 4379s - loss: 2.2567
Epoch 7/50
39826/39826 [==============================] - 203s - loss: 2.0107
Epoch 8/50
39826/39826 [==============================] - 197s - loss: 1.8158
Epoch 9/50
39826/39826 [==============================] - 200s - loss: 1.6670
Epoch 10/50
39826/39826 [==============================] - 1269s - loss: 1.5411
Epoch 11/50
39826/39826 [==============================] - 303s - loss: 1.4296
Epoch 12/50
39826/39826 [==============================] - 211s - loss: 1.3505
Epoch 13/50
39826/39826 [==============================] - 229s - loss: 1.2731
Epoch 14/50
39826/39826 [==============================] - 238s - loss: 1.2083
Epoch 15/50
39826/39826 [==============================] - 218s - loss: 1.1551
Epoch 16/50
39826/39826 [==============================] - 214s - loss: 1.1066
Epoch 17/50
39826/39826 [==============================] - 214s - loss: 1.0636
Epoch 18/50
39826/39826 [==============================] - 210s - loss: 1.0216
Epoch 19/50
39826/39826 [==============================] - 213s - loss: 0.9908
Epoch 20/50
39826/39826 [==============================] - 209s - loss: 0.9633
Epoch 21/50
39826/39826 [==============================] - 209s - loss: 0.9363
Epoch 22/50
39826/39826 [==============================] - 208s - loss: 0.9230
Epoch 23/50
39826/39826 [==============================] - 191s - loss: 0.8858
Epoch 24/50
39826/39826 [==============================] - 190s - loss: 0.8745
Epoch 25/50
39826/39826 [==============================] - 192s - loss: 0.8552
Epoch 26/50
39826/39826 [==============================] - 199s - loss: 0.8363
Epoch 27/50
39826/39826 [==============================] - 222s - loss: 0.8238
Epoch 28/50
39826/39826 [==============================] - 228s - loss: 0.8081
Epoch 29/50
39826/39826 [==============================] - 223s - loss: 0.7951
Epoch 30/50
39826/39826 [==============================] - 228s - loss: 0.7904
Epoch 31/50
39826/39826 [==============================] - 232s - loss: 0.7699
Epoch 32/50
39826/39826 [==============================] - 222s - loss: 0.7597
Epoch 33/50
39826/39826 [==============================] - 213s - loss: 0.7495
Epoch 34/50
39826/39826 [==============================] - 225s - loss: 0.7397
Epoch 35/50
39826/39826 [==============================] - 220s - loss: 0.7285
Epoch 36/50
39826/39826 [==============================] - 215s - loss: 0.7301
Epoch 37/50
39826/39826 [==============================] - 215s - loss: 0.7176
Epoch 38/50
39826/39826 [==============================] - 232s - loss: 0.7038
Epoch 39/50
39826/39826 [==============================] - 281s - loss: 0.6973
Epoch 40/50
39826/39826 [==============================] - 260s - loss: 0.6944
Epoch 41/50
39826/39826 [==============================] - 254s - loss: 0.6886
Epoch 42/50
39826/39826 [==============================] - 248s - loss: 0.6856
Epoch 43/50
39826/39826 [==============================] - 258s - loss: 0.6727
Epoch 44/50
39826/39826 [==============================] - 248s - loss: 0.6743
Epoch 45/50
39826/39826 [==============================] - 253s - loss: 0.6618
Epoch 46/50
39826/39826 [==============================] - 251s - loss: 0.6541
Epoch 47/50
39826/39826 [==============================] - 259s - loss: 0.6533
Epoch 48/50
39826/39826 [==============================] - 260s - loss: 0.6454
Epoch 49/50
39826/39826 [==============================] - 262s - loss: 0.6437
Epoch 50/50
39826/39826 [==============================] - 264s - loss: 0.6436
Its accuracy when testing against 14552 samples is 60.7%.
Loading testing data...
Found .npy files for X_test and y_test. Loading...
Accuracy using 14552 testing samples: 0.607064