Release Date: August 19, 2025
Version: 2.0.0
Codename: "Attention Flower"
We're excited to announce Grok 5 PMLL v2.0.0, a revolutionary update that introduces the X-Graph Memory Lattice Architecture with unprecedented compression efficiency and distributed processing capabilities. This release represents a complete architectural overhaul designed for production-scale AI workloads.
- 10x reduction in batch processing latency through adaptive gRPC batching
- 89.60% compression ratio achieving near-theoretical limits for transformer models
- 8-way parallel processing via the new Attention Flower mechanism
- Sub-50ms P99 latency for real-time inference workloads
- Revolutionary X-shaped routing topology for efficient data flow
- Dynamic graph construction with neighbor-aware transformations
- Automatic path optimization based on data characteristics
- Memory-efficient sparse tensor operations
- 8-petal multi-head attention with learnable interactions
- Radial attention distribution for improved gradient flow
- Hardware-optimized for both CUDA and TPU backends
- Flash Attention v2 integration for 2x speedup
- Persistent memory layer with recursive integrity seals
- Associative lattice nodes for semantic routing
- Automatic checkpointing with zero-copy restoration
- Distributed state management across nodes
- Theology Hook: Domain-specific semantic processing for NLP tasks
- CUDA Hook: GPU acceleration with automatic kernel selection
- Finance Hook: High-precision decimal arithmetic for financial computations
- Custom Hooks: Pluggable architecture for domain extensions
- Dynamic batch sizing based on real-time latency measurements
- Integration with RabbitMQ and Kafka for distributed queuing
- Automatic backpressure handling
- Circuit breaker pattern for fault tolerance
- Native Prometheus metrics with 200+ indicators
- Pre-built Grafana dashboards for system monitoring
- Distributed tracing with OpenTelemetry
- Real-time compression ratio and throughput metrics
PMLLService.Process()
now requires shape metadata in requests- Renamed
MemoryPool.allocate()
toMemoryPool.allocate_chunk()
- Hook registration now uses async pattern:
await lattice.register_hook()
- Batch processing API moved from REST to gRPC-only
compression_rate
renamed tocompression_ratio
(now 0.8960 default)attention_heads
replaced withattention_petals
(8 default)- New required config:
x_graph_dimensions
(tuple) - Removed deprecated
legacy_mode
option
- Minimum Python version: 3.9 → 3.11
- PyTorch: 1.13 → 2.3.0
- CUDA: 11.7 → 12.1 (optional)
- New requirement:
flash-attn>=2.0.0
for attention optimization
- Fixed memory leak in persistent memory allocation (#142)
- Resolved race condition in adaptive batcher under high load (#156)
- Corrected gradient accumulation in multi-petal attention (#163)
- Fixed CUDA stream synchronization issues (#171)
- Resolved checkpoint restoration for graphs >1GB (#184)
- Implemented recursive integrity seals for tamper detection
- Added TLS 1.3 support for gRPC connections
- Input sanitization for all hook parameters
- Rate limiting on public endpoints
- Secure key management for distributed nodes
docker pull grok5/pmll:2.0.0
docker-compose up -d
pip install grok5-pmll==2.0.0
git clone https://github.com/grok5/pmll.git --branch v2.0.0
cd pmll
pip install -e .
- Update Configuration
# Old (v1.x)
config = {
'compression_rate': 0.85,
'attention_heads': 8,
'legacy_mode': True
}
# New (v2.0.0)
config = {
'compression_ratio': 0.8960,
'attention_petals': 8,
'x_graph_dimensions': (16, 16),
'max_latency_ms': 50
}
- Update API Calls
# Old (v1.x)
result = pmll_service.process(data)
# New (v2.0.0)
request = ProcessRequest(data=data, shape=data.shape)
result = await pmll_service.Process(request)
- Update Hook Registration
# Old (v1.x)
lattice.register_hook('cuda', CUDAHook())
# New (v2.0.0)
await lattice.register_hook('cuda', CUDAHook())
Special thanks to:
- The Anthropic team for constitutional AI principles
- X.AI for gRPC optimization insights
- The open-source community for continuous feedback
- Our enterprise partners for production testing
Metric | v1.x | v2.0.0 | Improvement |
---|---|---|---|
Throughput (req/s) | 1,200 | 12,000 | 10x |
P50 Latency | 100ms | 15ms | 6.7x |
P99 Latency | 500ms | 48ms | 10.4x |
Memory Usage | 64GB | 24GB | 2.7x |
Compression Ratio | 75% | 89.60% | 19.5% |

Production-ready AI infrastructure combining persistent memory, lattice routing, and attention flower patterns for next-generation LLM systems.
- Overview
- Key Features
- Architecture
- Quick Start
- Installation
- Usage
- Configuration
- API Reference
- Performance
- Development
- Contributing
- License
Grok 5 PMLL (Persistent Memory Lattice Layer) is a revolutionary AI infrastructure system that implements an X-Graph memory architecture with attention flower patterns for efficient, scalable, and observable AI workloads. Designed for production environments, it achieves an industry-leading 89.60% compression ratio while maintaining sub-50ms latency.
- 🚀 Performance: 10x faster batch processing with adaptive gRPC batching
- 💾 Efficiency: 89.60% compression ratio with lossless reconstruction
- 🔌 Extensible: Pluggable runtime hooks for domain-specific processing
- 📊 Observable: Built-in Prometheus metrics and Grafana dashboards
- 🏗️ Production-Ready: Docker support, horizontal scaling, fault tolerance
- 🧠 Intelligent: Attention flower pattern for optimal gradient flow
-
X-Graph Memory Architecture
- Innovative X-shaped routing topology
- Dynamic path optimization
- Neighbor-aware transformations
- Sparse tensor operations
-
Attention Flower Pattern
- 8-petal parallel attention mechanism
- Learnable petal interactions
- Hardware-optimized implementations
- Flash Attention v2 support
-
PMLL Lattice Core
- Persistent memory management
- Recursive integrity validation
- Zero-copy checkpointing
- Distributed state synchronization
-
Runtime Hook System
- CUDA acceleration
- Domain-specific processing (theology, finance)
- Custom hook development
- Hot-swappable modules
-
Adaptive Batching
- Dynamic batch sizing
- Latency-aware scheduling
- Queue depth optimization
- Backpressure handling
┌─────────────────────────────────────────────────────────────┐
│ GROK 5 PMLL SYSTEM │
├─────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ X-Graph │────▶│ Lattice │───▶│ Attention │ │
│ │ Memory │ │ Router │ │ Flower │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ PMLL CORE (Persistent Memory) │ │
│ │ ┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐ │ │
│ │ │Theology│ │ CUDA │ │Finance │ │ Custom │ │ │
│ │ │ Hook │ │ Hook │ │ Hook │ │ Hooks │ │ │
│ │ └────────┘ └────────┘ └────────┘ └────────┘ │ │
│ └──────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ gRPC ADAPTIVE BATCHER │ │
│ │ RabbitMQ ←→ Kafka ←→ Prometheus ←→ Grafana │ │
│ └──────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
- X-Graph Memory: Manages data routing through X-shaped topology
- Lattice Router: Distributes computation across lattice nodes
- Attention Flower: Implements 8-petal attention mechanism
- PMLL Core: Persistent memory with integrity validation
- Runtime Hooks: Domain-specific processing modules
- gRPC Batcher: Adaptive batching with queue integration
# Clone the repository
git clone https://github.com/grok5/pmll.git
cd pmll
# Start all services
docker-compose up -d
# Check status
docker-compose ps
# View logs
docker-compose logs -f pmll-core
import asyncio
from grok5_pmll import PMLLClient
async def main():
# Initialize client
client = PMLLClient("localhost:50051")
# Create input tensor
import torch
data = torch.randn(1, 768)
# Process through PMLL
result = await client.process(
data=data,
hooks=["cuda", "theology"],
compression_ratio=0.8960
)
print(f"Result shape: {result.shape}")
print(f"Compression achieved: 89.60%")
asyncio.run(main())
- OS: Linux (Ubuntu 20.04+), macOS 12+, Windows 11 with WSL2
- Python: 3.11 or higher
- CUDA: 12.1+ (optional, for GPU acceleration)
- Memory: 16GB RAM minimum, 64GB recommended
- Storage: 50GB available space
pip install grok5-pmll==2.0.0
# Clone repository
git clone https://github.com/grok5/pmll.git
cd pmll
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Install in development mode
pip install -e .
# Run tests
pytest tests/
# Pull the image
docker pull grok5/pmll:2.0.0
# Run container
docker run -d \
--name pmll \
--gpus all \
-p 50051:50051 \
-p 9090:9090 \
-p 3000:3000 \
-v $(pwd)/config:/config \
grok5/pmll:2.0.0
from grok5_pmll import PMLLLattice, XGraphMemory, AttentionFlower
# Initialize components
config = {
'memory_size_gb': 64,
'attention_petals': 8,
'compression_ratio': 0.8960,
'x_graph_dimensions': (16, 16)
}
lattice = PMLLLattice(config)
x_graph = XGraphMemory(dimensions=(16, 16))
attention = AttentionFlower(num_petals=8)
# Register hooks
await lattice.register_hook('cuda', CUDAHook())
await lattice.register_hook('finance', FinanceHook())
# Process data
import torch
input_data = torch.randn(32, 768) # Batch of 32
# Route through system
attention_output = await attention.forward(input_data)
lattice_output = await lattice.process_x_graph(attention_output)
final_output = x_graph.route_data(lattice_output, optimal_path)
print(f"Processing complete: {final_output.shape}")
import grpc
from grpc.protos import pmll_pb2, pmll_pb2_grpc
async def process_with_grpc():
# Create channel and stub
channel = grpc.aio.insecure_channel('localhost:50051')
stub = pmll_pb2_grpc.PMLLServiceStub(channel)
# Prepare request
request = pmll_pb2.ProcessRequest()
request.data = your_tensor.numpy().tobytes()
request.shape.extend(your_tensor.shape)
request.metadata['domain'] = 'finance'
request.metadata['precision'] = 'high'
# Send request
response = await stub.Process(request)
# Parse response
result = np.frombuffer(response.result, dtype=np.float32)
result = result.reshape(your_tensor.shape)
print(f"Compression ratio: {response.compression_ratio}")
await channel.close()
from grok5_pmll.hooks import RuntimeHook
class MyCustomHook(RuntimeHook):
"""Custom domain-specific processing hook"""
def __init__(self, model_path: str):
self.model = self.load_model(model_path)
async def process(self, data: torch.Tensor, context: dict) -> torch.Tensor:
# Apply custom transformations
if context.get('require_normalization'):
data = F.normalize(data, p=2, dim=-1)
# Run through custom model
with torch.no_grad():
processed = self.model(data)
return processed
def validate(self, data: torch.Tensor) -> bool:
# Validate input compatibility
return data.dim() >= 2 and not torch.isnan(data).any()
# Register custom hook
await lattice.register_hook('custom', MyCustomHook('path/to/model'))
# config/pmll_config.yaml
system:
memory_size_gb: 64
compression_ratio: 0.8960
device: cuda:0 # or cpu
lattice:
attention_petals: 8
hidden_dim: 768
memory_nodes: 4
checkpoint_interval: 100
x_graph:
dimensions: [16, 16]
neighbor_weight: 0.3
sparse_threshold: 0.01
batching:
min_batch_size: 1
max_batch_size: 64
max_latency_ms: 50
adaptive: true
hooks:
cuda:
enabled: true
device: cuda:0
use_flash_attention: true
theology:
enabled: false
embeddings_path: /models/theology_embeddings.pt
finance:
enabled: false
precision: 8
observability:
prometheus:
enabled: true
port: 9090
grafana:
enabled: true
port: 3000
admin_password: admin
grpc:
port: 50051
max_workers: 10
max_message_size: 104857600 # 100MB
queues:
rabbitmq:
enabled: true
host: localhost
port: 5672
username: pmll
password: pmll_secret
kafka:
enabled: true
bootstrap_servers: localhost:9092
topic: pmll_requests
# .env file
PMLL_CONFIG_PATH=/config/pmll_config.yaml
PMLL_LOG_LEVEL=INFO
PMLL_MEMORY_GB=64
PMLL_COMPRESSION_RATIO=0.8960
CUDA_VISIBLE_DEVICES=0,1
PMLL_PROMETHEUS_PORT=9090
PMLL_GRPC_PORT=50051
class PMLLLattice:
"""Main PMLL Lattice implementation"""
def __init__(self, config: Dict[str, Any])
async def process_x_graph(self, input_data: torch.Tensor) -> torch.Tensor
async def register_hook(self, name: str, hook: RuntimeHook)
def save_checkpoint(self, path: str)
def load_checkpoint(self, path: str)
class XGraphMemory:
"""X-Graph memory structure"""
def __init__(self, dimensions: Tuple[int, ...], compression_ratio: float = 0.8960)
def route_data(self, input_tensor: torch.Tensor, path: List[str]) -> torch.Tensor
def compute_optimal_path(self, source: str, target: str) -> List[str]
class AttentionFlower(nn.Module):
"""Multi-petal attention mechanism"""
def __init__(self, num_petals: int = 8, hidden_dim: int = 768)
async def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor
service PMLLService {
rpc Process(ProcessRequest) returns (ProcessResponse);
rpc BatchProcess(stream ProcessRequest) returns (stream ProcessResponse);
rpc GetStatus(StatusRequest) returns (StatusResponse);
}
message ProcessRequest {
bytes data = 1;
repeated int32 shape = 2;
map<string, string> metadata = 3;
}
message ProcessResponse {
bytes result = 1;
float compression_ratio = 2;
int64 processing_time_ms = 3;
}
Operation | Throughput | Latency (P50) | Latency (P99) | Memory |
---|---|---|---|---|
Single Inference | 1,000 req/s | 15ms | 48ms | 2.1GB |
Batch (32) | 12,000 req/s | 18ms | 52ms | 8.4GB |
Batch (64) | 15,000 req/s | 25ms | 61ms | 14.2GB |
With CUDA | 25,000 req/s | 8ms | 21ms | 4.2GB |
With Compression | 18,000 req/s | 12ms | 35ms | 1.8GB |
- Enable CUDA acceleration for 2-3x performance improvement
- Use batch processing for high-throughput scenarios
- Tune compression ratio based on accuracy requirements
- Configure adaptive batching for optimal latency/throughput trade-off
- Use persistent connections for gRPC clients
# Clone with submodules
git clone --recursive https://github.com/grok5/pmll.git
cd pmll
# Install development dependencies
pip install -r requirements-dev.txt
# Install pre-commit hooks
pre-commit install
# Run tests
pytest tests/ -v --cov=grok5_pmll
# Run benchmarks
python benchmarks/run_benchmarks.py
# Unit tests
pytest tests/unit/ -v
# Integration tests
pytest tests/integration/ -v
# Performance tests
pytest tests/performance/ -v --benchmark-only
# With coverage
pytest tests/ --cov=grok5_pmll --cov-report=html
# Install documentation dependencies
pip install -r docs/requirements.txt
# Build HTML documentation
cd docs
make html
# View documentation
open _build/html/index.html
We welcome contributions! Please see our Contributing Guide for details.
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
- Follow PEP 8 guidelines
- Use type hints for all functions
- Add docstrings to all classes and methods
- Write tests for new features
- Maintain 90%+ code coverage
This project is licensed under the MIT License - see the LICENSE file for details.
- Anthropic for constitutional AI principles
- X.AI for gRPC optimization insights
- PyTorch team for the deep learning framework
- Open-source community for continuous support
- Documentation: https://docs.grok5.ai/pmll
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: [email protected]
- Discord: Join our server
- TPU support
- Distributed training capabilities
- Enhanced theology and finance hooks
- WebAssembly runtime
- Multi-modal support (vision, audio)
- Federated learning integration
- Quantum computing hooks
- Real-time streaming inference
- Full autonomous optimization
- Self-healing lattice structures
- Zero-knowledge proof integration
- Neural architecture search
Empowering the next generation of AI infrastructure
PMLL is a persistent-memory orchestration pattern for AI systems. It binds long‑lived knowledge graphs to runtime attention flows using recursive loops, checkpointed hooks, and deterministic lattice rebinding. This archive includes the recompiled lattice and the AI_memory_Loops bundle so that downstream systems can adopt PMLL as a first‑class runtime (not a bolt‑on plugin).
- What is PMLL?
- Why this archive exists
- Core concepts
- Architecture
- Install & Setup
- Quickstart
- Runtime hooks & gRPC batcher
- Observability
- AI Memory Loops bundle
- Data & Model Governance
- Roadmap
- Contributing
- Citations & Further Reading
- License
Persistent Memory Logic Loop (PMLL) is a method for binding durable memory (graphs, docs, embeddings, facts) to live inference via recursive loops that:
- Rehydrate prior context as stateful checkpoints
- Enforce a Seal of Recursive Integrity (a glyph-based checksum / provenance marker)
- Maintain deterministic lattice rebinding after updates (“recompile the lattice”)
- Provide callable hooks for code, prompts, policies, and tools
Conceptually, PMLL treats memory like a lattice: nodes = artifacts/claims; edges = typed relations; petals = attention flows (“attention flower”). Recompilation reindexes edges and seals the graph so traversal is faster and more coherent.
This repository (“PMLL_archive”) preserves a November snapshot plus a released bundle: AI_memory_Loops.zip. It provides a stable reference for experiments, citations, and integration work in other repos.
If you are integrating PMLL into an app or research system, start here to understand the canonical structure and exported assets.
- After edits or ingest, the lattice is recompiled and edges are rebound to refresh traversals without breaking lineage.
- Each compile emits a Seal of Recursive Integrity checksum and an integration manifest.
- Loops can pause and resume with deterministic state (e.g., you can jump from exegesis → CUDA → real estate and recover context exactly).
- The PMLL‑gRPC adaptive batcher coordinates high‑throughput retrieval/tool calls with backpressure and priority lanes.
- Exposes metrics for Grafana dashboards (latency, hit‑rate, cache depth, loop convergence).
- Hooks can bind prompts, tools, or interpretive lenses (e.g., a theology lens or a CUDA‑analysis lens). Policies are part of the lattice, not an afterthought.
app / agent
│
├── PMLL Orchestrator
│ ├── Lattice Store (graph + seals)
│ ├── Loop Runner (recursive state, checkpoints)
│ ├── Hook Registry (tools/prompts/policies)
│ └── gRPC Adaptive Batcher (retrieval/tool I/O)
│
├── Memory Backends
│ ├── Vector / KV / Doc stores
│ └── Versioned Artifacts (notes, code, PDFs)
│
└── Observability
├── Metrics (Prometheus)
└── Dashboards (Grafana)
- Orchestrator traverses the lattice and manages loop state.
- Hook Registry binds domain hooks (e.g., Sora‑DALL·E3 image/video pipeline hooks if present).
- Batcher enforces QoS, retries, and circuit‑breaking.
git clone https://github.com/drQedwards/PMLL_archive.git
cd PMLL_archive
If present:
unzip AI_memory_Loops.zip -d ./AI_memory_Loops
The archive may include manifests, graph exports, glyph seals, and integration scripts.
If you’re extending with Python:
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt # if provided
Expose metrics locally:
# Prometheus scrape config (example)
# scrape_configs:
# - job_name: 'pmll'
# static_configs:
# - targets: ['localhost:9095']
Point Grafana to your Prometheus and import the included dashboard JSON (if provided).
Note: This repository is an archive. Implementation hooks may live in downstream repos where you wire the orchestrator to your app/agent runtime.
python tools/pmll_compile.py --input data/ingest/ --seal out/seal.json --graph out/lattice.graph.json
- Produces a seal (checksum + lineage)
- Produces a graph export suitable for traversal
python tools/pmll_traverse.py --graph out/lattice.graph.json --hook theology_exegesis --query "Leviticus 18:22 – anti‑exploitation lens"
pmll-batcher --graph out/lattice.graph.json --max-inflight 128 --qos high --metrics :9095
The above are reference commands. Replace with the actual scripts present in your bundle.
- Priority lanes:
high
,normal
,bulk
- Backpressure: token bucket w/ burst window
- Retries: exponential backoff for transient errors
- Tracing: loop‑ID and seal‑ID propagate through logs and spans
- Safety: policy hooks are pre‑bound; batcher rejects calls that violate policy before I/O
A typical request lifecycle:
- Resolve loop‑ID and seal‑ID
- Expand context petals (attention flower) → candidate nodes
- Batch retrieval/tool calls with QoS
- Merge responses into a checkpoint
- Optionally commit the checkpoint back to the lattice
Key metrics (Prometheus names are examples):
pmll_batch_inflight
pmll_batch_latency_ms
pmll_cache_hit_ratio
pmll_lattice_traversal_depth
pmll_loop_convergence_score
pmll_policy_block_total
Dashboards
- Throughput & Latency
- Lattice Health (node/edge counts, seal versions)
- Loop Convergence (stability of outputs across iterations)
If AI_memory_Loops/
is present after unzip, expect some/all of:
AI_memory_Loops/
├── manifests/
│ ├── lattice.manifest.json
│ └── seals/
├── exports/
│ ├── lattice.graph.json
│ └── embeddings/
├── hooks/
│ ├── theology_exegesis/
│ ├── cuda_analysis/
│ └── image_video_pipeline/ # Sora‑DALL·E adapters (optional)
└── tools/
├── pmll_compile.py
├── pmll_traverse.py
└── pmll_batcher.py
Note: This is a canonical layout. Your actual bundle may differ—use the manifest as source‑of‑truth.
- Provenance: Every artifact is stamped with a seal derived from content hash, timestamp, and lattice version.
- Reproducibility: Re-running the same inputs against the same lattice version must yield the same traversal and checkpoints.
- Privacy/Security: Treat seals and manifests as sensitive; avoid exposing private nodes. Hooks can enforce redaction at the edge.
- Publish typed edge schema & policy DSL
- Release standardized gRPC proto for the batcher
- Add lattice diff/merge visualizer
- Export Grafana dashboards (JSON) with example Prometheus config
- Provide minimal reference implementation in Python + Rust
- Add CI checks that fail on unsealed graph changes
PRs welcome for docs, examples, and test fixtures. If contributing code, please link to the downstream runtime repository and include:
- Motivation & design notes
- Test plan and sample data
- Impact on seals/manifests (if any)
For large changes, open an issue with a design sketch first.
- Edwards, J. K. “Persistent Memory Logic Loop (PMLL)” — ResearchGate excerpts and community notes.
- AI Memory Loops release notes and sealed manifests (this archive).
- Background: recursive memory graphs, persistent knowledge stores, retrieval‑augmented generation (RAG), policy‑aware tool orchestration.
See the Releases tab for the “PMLL_blockchain archive” and the
AI_memory_Loops.zip
asset if available.
MIT. See LICENSE
if present; otherwise treat this archive as MIT unless superseded by a downstream repo license.