Skip to content

confluentinc/quickstart-streaming-agents

Repository files navigation

Streaming Agents on Confluent Cloud Quickstart

Sign up for Confluent Cloud

Build real-time AI agents with Confluent Cloud Streaming Agents. This quickstart includes two hands-on labs:

Lab Description
Lab1 - MCP Tool Calling Price matching agent that scrapes competitor websites and adjusts prices in real-time

Lab1 Architecture
Lab2 - Vector Search - RAG Vector search pipeline with optional retrieval augmented generation (RAG) for intelligent document retrieval

Lab2 Architecture

Prerequisites

Required accounts & credentials:

  • Sign up for Confluent Cloud
  • Lab1: Zapier account + SSE endpoint URL → Setup guide
  • Lab2: MongoDB Atlas + connection string, database-specific user credentials → Setup guide

Required tools:

Installation commands (Mac/Windows/Linux)

Mac:

brew install uv git python && brew tap hashicorp/tap && brew install hashicorp/tap/terraform && brew install --cask confluent-cli docker-desktop && brew install awscli  # or azure-cli

Windows:

winget install astral-sh.uv Git.Git Docker.DockerDesktop Hashicorp.Terraform ConfluentInc.Confluent-CLI Python.Python Amazon.AWSCLI # or Microsoft.AzureCLI

Linux:

curl -LsSf https://astral.sh/uv/install.sh | sh
# Install other tools via your package manager

🚀 Quick Start

Clone the repository and navigate to the Quickstart directory:

git clone https://github.com/confluentinc/quickstart-streaming-agents.git
cd quickstart-streaming-agents

One command deployment:

uv run deploy

That's it! The script will guide you through setup, automatically create API keys, and deploy your chosen lab(s).

Directory Structure

quickstart-streaming-agents/
├── aws|azure/               # Choose a cloud
│   ├── core/                # Shared Terraform infrastructure
│   ├── lab1-tool-calling/   # Lab-specific infra
│   └── lab2-vector-search/  # Lab-specific infra
├── deploy.py                # 🚀 Start here
└── scripts/                 # Python utilities
🔄 Alternative deployment methods

Traditional Python:

pip install -e . && python deploy.py
🔧 Manual terraform deployment

Prerequisites

  • All tools installed and authenticated
  • Confluent Cloud API keys (Cloud Resource Management keys with EnvironmentAdmin role)

Deploy

cd aws/  # or azure/
cd core/
terraform init && terraform apply --auto-approve
cd ../lab1-tool-calling/  # or lab2-vector-search
terraform init && terraform apply --auto-approve

Required terraform.tfvars

cloud_provider = "aws"  # or "azure"
cloud_region = "your-region"  # must be a region supported by MongoDB free tier, otherwise Lab2 deployment will not succeed
confluent_cloud_api_key = "your-key"
confluent_cloud_api_secret = "your-secret"
zapier_sse_endpoint = "https://mcp.zapier.com/api/mcp/s/your-key/sse"  # Lab1
mongodb_connection_string = "mongodb+srv://cluster0.abc.mongodb.net"  # Lab2
mongodb_username = "your-db-user"  # Lab2
mongodb_password = "your-db-pass"  # Lab2

Tear down

cd aws/lab1-tool-calling && terraform destroy --auto-approve
cd ../core && terraform destroy --auto-approve

Cleanup

# Automated
uv run destroy

Sign up for early access to Flink AI features

For early access to exciting new Flink AI features, fill out this form and we'll add you to our early access previews.

Releases

No releases published

Packages

No packages published

Languages