Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions examples/minimal_clustering.rs
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,11 @@ fn main() {
let mut model = ClusteringModel::new(x.clone(), settings);
model.train();

// Evaluate clustering quality using the known ground-truth assignments
// for this fixture dataset.
let truth = vec![1_u8, 1, 2, 2];
model.evaluate(&truth);

// Print trained results
println!("{model}");

Expand Down
18 changes: 18 additions & 0 deletions tests/clustering.rs
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ use automl::{
ClusteringModel, ModelError,
metrics::ClusterMetrics,
settings::{ClusteringAlgorithmName, ClusteringSettings},
utils::load_csv_features,
};
use clustering_data::clustering_testing_data;
use smartcore::linalg::basic::matrix::DenseMatrix;
Expand Down Expand Up @@ -92,6 +93,23 @@ fn clustering_model_display_shows_metrics() {
assert!(output.contains("1.00"));
}

#[test]
fn clustering_model_display_shows_metrics_for_fixture_csv() {
// Arrange
let x = load_csv_features("tests/fixtures/clustering_points.csv").unwrap();
let mut model: ClusteringModel<f64, u8, DenseMatrix<f64>, Vec<u8>> =
ClusteringModel::new(x.clone(), ClusteringSettings::default().with_k(2));
model.train();
let truth = vec![1_u8, 1, 2, 2];
model.evaluate(&truth);

// Act
let output = format!("{model}");

// Assert
assert!(output.contains("1.00"));
}

#[test]
fn clustering_model_display_shows_configured_algorithm_when_untrained() {
// Arrange
Expand Down