Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 5 additions & 7 deletions rf.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ def sample(self, z, cond, null_cond=None, sample_steps=50, cfg=2.0):
).cuda()

model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Number of parameters: {model_size}, {model_size / 1e6}M")
print(f"Number of trainable parameters: {model_size}, {model_size / 1e6}M")

rf = RF(model)
optimizer = optim.Adam(model.parameters(), lr=5e-4)
Expand All @@ -106,10 +106,10 @@ def sample(self, z, cond, null_cond=None, sample_steps=50, cfg=2.0):

wandb.init(project=f"rf_{dataset_name}")

for epoch in range(100):
for epoch in tqdm(range(100), unit="epoch", leave=False, position=0):
lossbin = {i: 0 for i in range(10)}
losscnt = {i: 1e-6 for i in range(10)}
for i, (x, c) in tqdm(enumerate(dataloader)):
for i, (x, c) in tqdm(enumerate(dataloader), total=len(dataloader), unit="batch", leave=False, position=1):
x, c = x.cuda(), c.cuda()
optimizer.zero_grad()
loss, blsct = rf.forward(x, c)
Expand All @@ -123,10 +123,8 @@ def sample(self, z, cond, null_cond=None, sample_steps=50, cfg=2.0):
lossbin[int(t * 10)] += l
losscnt[int(t * 10)] += 1

# log
for i in range(10):
print(f"Epoch: {epoch}, {i} range loss: {lossbin[i] / losscnt[i]}")

time_bin_losses = [f"{i}:{lossbin[i]/losscnt[i]:.4f}" for i in range(10)]
tqdm.write(f"Epoch {epoch} time bin losses: {' '.join(time_bin_losses)}")
wandb.log({f"lossbin_{i}": lossbin[i] / losscnt[i] for i in range(10)})

rf.model.eval()
Expand Down