Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions brainscore_vision/models/convnextv2-tiny/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
from brainscore_vision import model_registry
from brainscore_vision.model_helpers.brain_transformation import ModelCommitment
from .model import get_model, get_layers

model_registry['convnextv2-tiny'] = lambda: ModelCommitment(identifier='convnextv2-tiny', activations_model=get_model('convnextv2-tiny'), layers=get_layers('convnextv2-tiny'))
Empty file.
141 changes: 141 additions & 0 deletions brainscore_vision/models/convnextv2-tiny/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
from brainscore_vision.model_helpers.check_submission import check_models
import functools
import numpy as np
import torch
from transformers import AutoImageProcessor, ConvNextV2ForImageClassification
from brainscore_vision.model_helpers.activations.pytorch import PytorchWrapper
from PIL import Image
from brainscore_vision.model_helpers.activations.pytorch import load_preprocess_images


"""
Template module for a base model submission to brain-score
"""

def get_model(name):
assert name == 'convnextv2-tiny'
# https://huggingface.co/models?sort=downloads&search=cvt
image_size = 224
processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-22k-224")
model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-tiny-22k-224")
print(model)
preprocessing = functools.partial(load_preprocess_images, processor=processor, image_size=image_size)
wrapper = PytorchWrapper(identifier=name, model=model, preprocessing=preprocessing)
#wrapper = PytorchWrapper(identifier='model-lecs', model=model, preprocessing=preprocessing)
wrapper.image_size = 224

return wrapper


def get_layers(name):
assert name == 'convnextv2-tiny'

return ['convnextv2.encoder.stages.0.layers.0', 'convnextv2.encoder.stages.0.layers.1', 'convnextv2.encoder.stages.0.layers.2',
'convnextv2.encoder.stages.1.layers.0', 'convnextv2.encoder.stages.1.layers.1', 'convnextv2.encoder.stages.1.layers.2',
'convnextv2.encoder.stages.2.layers.0', 'convnextv2.encoder.stages.2.layers.1', 'convnextv2.encoder.stages.2.layers.2',
'convnextv2.encoder.stages.2.layers.3', 'convnextv2.encoder.stages.2.layers.4', 'convnextv2.encoder.stages.2.layers.5',
'convnextv2.encoder.stages.2.layers.6', 'convnextv2.encoder.stages.2.layers.7', 'convnextv2.encoder.stages.2.layers.8',
'convnextv2.encoder.stages.3.layers.0', 'convnextv2.encoder.stages.3.layers.1', 'convnextv2.encoder.stages.3.layers.2',
]


def get_bibtex(model_identifier):
""""""


# def load_preprocess_images(image_filepaths, image_size, processor=None, **kwargs):
# images = load_images(image_filepaths)
# # images = [<PIL.Image.Image image mode=RGB size=400x400 at 0x7F8654B2AC10>, ...]
# images = [image.resize((image_size, image_size)) for image in images]
# if processor is not None:
# images = [processor(images=image, return_tensors="pt", **kwargs) for image in images]
# if len(images[0].keys()) != 1:
# raise NotImplementedError(f'unknown processor for getting model {processor}')
# assert list(images[0].keys())[0] == 'pixel_values'
# images = [image['pixel_values'] for image in images]
# images = torch.cat(images)
# images = images.cpu().numpy()
# else:
# images = preprocess_images(images, image_size=image_size, **kwargs)
# return images


# def load_images(image_filepaths):
# return [load_image(image_filepath) for image_filepath in image_filepaths]


# def load_image(image_filepath):
# with Image.open(image_filepath) as pil_image:
# if 'L' not in pil_image.mode.upper() and 'A' not in pil_image.mode.upper() \
# and 'P' not in pil_image.mode.upper(): # not binary and not alpha and not palletized
# # work around to https://github.com/python-pillow/Pillow/issues/1144,
# # see https://stackoverflow.com/a/30376272/2225200
# return pil_image.copy()
# else: # make sure potential binary images are in RGB
# rgb_image = Image.new("RGB", pil_image.size)
# rgb_image.paste(pil_image)
# return rgb_image


# def preprocess_images(images, image_size, **kwargs):
# preprocess = torchvision_preprocess_input(image_size, **kwargs)
# images = [preprocess(image) for image in images]
# images = np.concatenate(images)
# return images


# def torchvision_preprocess_input(image_size, **kwargs):
# from torchvision import transforms
# return transforms.Compose([
# transforms.Resize((image_size, image_size)),
# torchvision_preprocess(**kwargs),
# ])


# def torchvision_preprocess(normalize_mean=(0.485, 0.456, 0.406), normalize_std=(0.229, 0.224, 0.225)):
# from torchvision import transforms
# return transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize(mean=normalize_mean, std=normalize_std),
# lambda img: img.unsqueeze(0)
# ])


# def create_static_video(image, num_frames, normalize_0to1=False, channel_dim=3):
# '''
# Create a static video with the same image in all frames.
# Args:
# image (PIL.Image.Image): Input image.
# num_frames (int): Number of frames in the video.
# Returns:
# result (np.ndarray): np array of frames of shape (num_frames, height, width, 3).
# '''
# frames = []
# for _ in range(num_frames):
# frame = np.array(image)
# if normalize_0to1:
# frame = frame / 255.
# if channel_dim == 1:
# frame = frame.transpose(2, 0, 1)
# frames.append(frame)
# return np.stack(frames)


if __name__ == '__main__':
# Use this method to ensure the correctness of the BaseModel implementations.
# It executes a mock run of brain-score benchmarks.
check_models.check_base_models(__name__)


'''
Below Notes are from the original model file from Brain-Score 1.0, and
kept in this file for posterity.
'''


"""
Notes on the error:
- 'channel_x' key error:
# 'embeddings.patch_embeddings.projection',
https://github.com/search?q=repo%3Abrain-score%2Fmodel-tools%20channel_x&type=code
"""
Empty file.
4 changes: 4 additions & 0 deletions brainscore_vision/models/convnextv2-tiny/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
numpy
torch
transformers
Pillow
1 change: 1 addition & 0 deletions brainscore_vision/models/convnextv2-tiny/test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# Left empty as part of 2023 models migration
Empty file.