Skip to content

[ refactor ] proofs in Relation.Nullary.Decidable and a reexport in Function.Related.TypeIsomorphisms #2737

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 8 additions & 13 deletions src/Function/Related/TypeIsomorphisms.agda
Original file line number Diff line number Diff line change
Expand Up @@ -37,16 +37,21 @@ open import Relation.Binary hiding (_⇔_)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong)
open import Relation.Binary.PropositionalEquality.Properties
using (module ≡-Reasoning)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary using (Dec; ¬_; _because_; ofⁿ; contradiction)
open import Relation.Nullary.Negation.Core using (¬_)
import Relation.Nullary.Indexed as I
open import Relation.Nullary.Decidable using (True)

private
variable
a b c d : Level
A B C D : Set a

------------------------------------------------------------------------
-- A lemma relating True dec and P, where dec : Dec P

open import Relation.Nullary.Decidable public
using ()
renaming (True-↔ to True↔)

------------------------------------------------------------------------
-- Properties of Σ and _×_

Expand Down Expand Up @@ -350,16 +355,6 @@ Related-cong {A = A} {B = B} {C = C} {D = D} A≈B C≈D = mk⇔
C ∎)
where open EquationalReasoning

------------------------------------------------------------------------
-- A lemma relating True dec and P, where dec : Dec P

True↔ : ∀ {p} {P : Set p}
(dec : Dec P) → ((p₁ p₂ : P) → p₁ ≡ p₂) → True dec ↔ P
True↔ ( true because [p]) irr =
mk↔ₛ′ (λ _ → invert [p]) (λ _ → _) (irr _) (λ _ → refl)
True↔ (false because ofⁿ ¬p) _ =
mk↔ₛ′ (λ()) (invert (ofⁿ ¬p)) (λ x → flip contradiction ¬p x) (λ ())

------------------------------------------------------------------------
-- Relating a predicate to an existentially quantified one with the
-- restriction that the quantified variable is equal to the given one
Expand Down
24 changes: 16 additions & 8 deletions src/Relation/Nullary/Decidable.agda
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ open import Relation.Nullary.Irrelevant using (Irrelevant)
open import Relation.Nullary.Negation.Core using (¬_; contradiction)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; refl; sym; trans; cong′)
using (_≡_; refl; sym; trans)

private
variable
Expand All @@ -41,18 +41,26 @@ map A⇔B = map′ to from
-- If there is an injection from one setoid to another, and the
-- latter's equivalence relation is decidable, then the former's
-- equivalence relation is also decidable.
via-injection : {S : Setoid a ℓ₁} {T : Setoid b ℓ₂}
(inj : Injection S T) (open Injection inj) →
Decidable Eq₂._≈_ → Decidable Eq₁._≈_
via-injection inj _≟_ x y = map′ injective cong (to x ≟ to y)
where open Injection inj

module _ {S : Setoid a ℓ₁} {T : Setoid b ℓ₂} (injection : Injection S T) where

open Injection injection

via-injection : Decidable Eq₂._≈_ → Decidable Eq₁._≈_
via-injection _≟_ x y = map′ injective cong (to x ≟ to y)

------------------------------------------------------------------------
-- A lemma relating True and Dec

True-↔ : (a? : Dec A) → Irrelevant A → True a? ↔ A
True-↔ (true because [a]) irr = let a = invert [a] in mk↔ₛ′ (λ _ → a) _ (irr a) cong′
True-↔ (false because [¬a]) _ = let ¬a = invert [¬a] in mk↔ₛ′ (λ ()) ¬a (λ a → contradiction a ¬a) λ ()
True-↔ a? irr = mk↔ₛ′ to from to-from (from-to a?)
where
to = toWitness {a? = a?}
from = fromWitness {a? = a?}
to-from : ∀ a → to (from a) ≡ a
to-from a = irr _ a
from-to : ∀ a? (x : True a?) → fromWitness (toWitness x) ≡ x
from-to (yes _) _ = refl

------------------------------------------------------------------------
-- Result of decidability
Expand Down