conda env create -f environment.yml
conda activate animo
pip install git+https://github.com/openai/CLIP.git
Please follow the instructions in ./data_generation/README.md
to obtain the AniMo4D dataset. 📂
You may also need to download evaluation models in ./models/text_mot_match/README.md
and glove files in ./glove/README.md
to run the scripts. ⚙️
python train_vq.py \
--name rvq \
--gpu_id 0 \
--batch_size 128 \
--num_quantizers 6 \
--max_epoch 50 \
--quantize_dropout_prob 0.2 \
--gamma 0.05 \
--warm_up_iter 80000 \
--checkpoints_dir ckpt/animo
python train_t2m_transformer.py \
--name mtrans \
--gpu_id 0 \
--batch_size 64 \
--vq_name rvq \
--max_epoch 80 \
--checkpoints_dir ckpt/animo
python train_res_transformer.py \
--name rtrans \
--gpu_id 0 \
--batch_size 64 \
--vq_name rvq \
--cond_drop_prob 0.2 \
--max_epoch 80 \
--share_weight \
--checkpoints_dir ckpt/animo
python eval_t2m_vq.py \
--gpu_id 0 \
--name rvq \
--ext eval_reconstruction \
--checkpoints_dir ckpt/animo
python eval_t2m_trans_res.py \
--res_name rtrans \
--name mtrans \
--vq_name rvq \
--gpu_id 0 \
--cond_scale 4 \
--time_steps 10 \
--ext eval_generation \
--which_epoch latest \
--checkpoints_dir ckpt/animo
@inproceedings{wang2025animo,
title={AniMo: Species-Aware Model for Text-Driven Animal Motion Generation},
author={Wang, Xuan and Ruan, Kai and Zhang, Xing and Wang, Gaoang},
booktitle={Proceedings of the Computer Vision and Pattern Recognition Conference},
pages={1929--1939},
year={2025}
}
We sincerely thank the open-sourcing of these works where our code is based on: MoMask, Text-to-motion, AttT2M, HumanML3D, OmniMotionGPT and T2M-GPT.