-
Notifications
You must be signed in to change notification settings - Fork 325
Add Airbnb Data Analysis Project under datascience folder #1799 #1801
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,34 @@ | ||||||||||||||||||||||||||
# Airbnb Data Analysis Project | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## Overview | ||||||||||||||||||||||||||
This project provides a comprehensive analysis of Airbnb listing data to uncover trends in pricing, availability, and other key factors. Using Tableau for visualization, the project explores the Airbnb rental market, highlighting patterns based on geographic location, room types, and pricing variations. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## Project Files | ||||||||||||||||||||||||||
- **AirbnbProject.pptx**: PowerPoint presentation summarizing the main insights from the analysis. | ||||||||||||||||||||||||||
- **TableauProject.twbx**: Tableau workbook for creating and exploring interactive visualizations. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
Comment on lines
+6
to
+9
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 🧩 Analysis chainInclude the Excel dataset and reconcile file names; avoid spaces/case drift.
Apply this minimal update (adjust names to whatever is actually in the repo): ## Project Files
-- **AirbnbProject.pptx**: PowerPoint presentation summarizing the main insights from the analysis.
-- **TableauProject.twbx**: Tableau workbook for creating and exploring interactive visualizations.
+- **Airbnb-Project.pptx**: PowerPoint presentation summarizing the main insights from the analysis.
+- **TableauProject.twbx**: Tableau workbook for creating and exploring interactive visualizations.
+- **data/Airbnb_Listings.xlsx**: Source dataset used by the workbook (if not embedded in the TWBX). Run this to verify filenames and the folder that actually exists: 🏁 Script executed: #!/usr/bin/env bash
set -euo pipefail
for d in Data_Science/Airbnb-Data-Analysis datascience/Airbnb-Data-Analysis; do
if [ -d "$d" ]; then
echo "Contents of $d:"
ls -al "$d"
fi
done Length of output: 377 Normalize filenames in README and add the missing Excel dataset
🤖 Prompt for AI Agents
🧩 Analysis chainTrack large binaries with Git LFS to keep repo lean. TWBX/PPTX (and XLSX) often exceed normal size thresholds; ensure they’re LFS‑tracked. Use this check: 🏁 Script executed: #!/usr/bin/env bash
set -euo pipefail
echo "Potential large binaries:"
python - <<'PY'
import os
exts={'.twbx','.twb','.pptx','.xlsx','.xls','.csv'}
for root,_,files in os.walk('.'):
for f in files:
if os.path.splitext(f)[1].lower() in exts:
p=os.path.join(root,f)
try:
sz=os.path.getsize(p)
except OSError:
continue
if sz>=5*1024*1024:
print(f"{p}\t{sz/1024/1024:.1f} MB")
PY
echo
echo ".gitattributes entries referencing LFS:"
[ -f .gitattributes ] && rg -n 'filter=lfs' .gitattributes || echo "No .gitattributes found" Length of output: 1760 Track large binaries with Git LFS and migrate existing large files. No .gitattributes found; the repo contains multiple files >=5MB. Add a .gitattributes and LFS-track binary/artifact patterns (e.g. *.twbx, *.pptx, *.xlsx, *.xls and large *.csv), then migrate the existing large files into LFS or move them to external storage (git lfs migrate import --include="path,...").
|
||||||||||||||||||||||||||
## Objectives | ||||||||||||||||||||||||||
The main objectives of this analysis are to: | ||||||||||||||||||||||||||
- Analyze Average Price per Bedroom: Assess price variations based on the number of bedrooms. | ||||||||||||||||||||||||||
- Visualize Price Distribution by Zip Code: Identify geographic patterns in pricing. | ||||||||||||||||||||||||||
- Evaluate Weekly Revenue Trends: Observe seasonal and location-based revenue trends. | ||||||||||||||||||||||||||
- Analyze Listings by Bed Type and Bedroom Count: Gain insights into the types of listings and bed availability. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## Key Insights | ||||||||||||||||||||||||||
- **Average Price Per Bedroom**: Larger properties generally have higher average prices, with steep increases for properties with 4+ bedrooms. | ||||||||||||||||||||||||||
- **Price by Zip Code**: Some zip codes show significantly higher prices, possibly indicating more desirable or premium areas. | ||||||||||||||||||||||||||
- **Revenue Trends**: Weekly revenue peaks during certain seasons, reflecting high-travel demand periods. | ||||||||||||||||||||||||||
- **Common Listing Types**: Real beds are the most frequent, and properties with 1-2 bedrooms make up the majority of listings. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## Setup and Usage | ||||||||||||||||||||||||||
To interact with the project and explore the data: | ||||||||||||||||||||||||||
- Open **TableauProject.twbx**: Use Tableau Desktop to open the file and explore the visualizations. | ||||||||||||||||||||||||||
- Review the Presentation: Open **AirbnbProject.pptx** to see summarized findings. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
Comment on lines
+23
to
+27
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Specify Tableau Desktop version and whether data is embedded; add relinking steps. Without this, opening the TWBX may fail or silently point to the wrong data. Apply: ## Setup and Usage
-To interact with the project and explore the data:
-- Open **TableauProject.twbx**: Use Tableau Desktop to open the file and explore the visualizations.
-- Review the Presentation: Open **AirbnbProject.pptx** to see summarized findings.
+To interact with the project and explore the data:
+- Prerequisite: Tableau Desktop (specify tested version, e.g., 2023.3 or later).
+- Open **TableauProject.twbx** in Tableau Desktop.
+ - If the workbook expects an external Excel file (not embedded), go to Data > [Data Source] > Edit Connection and relink to `data/Airbnb_Listings.xlsx`.
+ - If an extract is used, Data > [Data Source] > Extract > Refresh after relinking.
+- Review the presentation: open **Airbnb-Project.pptx** for summarized findings. 📝 Committable suggestion
Suggested change
🤖 Prompt for AI Agents
|
||||||||||||||||||||||||||
## Future Enhancements | ||||||||||||||||||||||||||
Potential future improvements include: | ||||||||||||||||||||||||||
- Adding More Data Features: Incorporating additional features like reviews or amenities. | ||||||||||||||||||||||||||
- Predictive Analysis: Using machine learning to predict pricing trends based on data. | ||||||||||||||||||||||||||
- Interactive Web Dashboard: Creating a web-based, interactive dashboard for public access. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add data source, license, and non‑affiliation/privacy notes.
Provenance and licensing are required for compliance and reuse; add a short disclaimer on Airbnb affiliation and PII handling.
Apply:
📝 Committable suggestion
🤖 Prompt for AI Agents