Skip to content

Neuron is a composable agent framework inspired by cognitive neuroscience. It enables you to build, orchestrate, and monitor intelligent multi-agent systems using a modular circuit-based architecture.

License

Notifications You must be signed in to change notification settings

ShaliniAnandaPhD/Neuron

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Open Source Attribution Notice

Using open source software without proper attribution or in violation of license terms is not only ethically problematic but may also constitute a legal violation ⚠️ . I believe in supporting the open source community that makes projects like this possible.

If you're using code or tools from this repository or GitHub, please ensure you maintain all attribution notices and comply with all applicable licenses.

The license above is a modified MIT LICENSE for the purpose of this project πŸ‘†

πŸ“„ For full legal terms and enforcement policy, read the Neuron Legal Notice & Enforcement Terms.


Neuron: A Brain-Inspired AI Framework for Complex Reasoning

πŸ”§ Sanity Check 🧠 Run Ambiguity Audit πŸ“¦ Verify Microservices Layout 🎨 Ambiguity Visual Blueprint Check 🧠 Agent Reference Check πŸ› οΈ Ambiguity CI Setup Check πŸ“₯ Validate Input Test Files IP Protection Plus IP Monitoring Simple 🧱🧱🧱 Neuron LEGO Agent Builder πŸͺ LEGO Agent Marketplace 🎭 Politeness Phrase Detection πŸš€ Performance-Based Auto-Swapping System πŸ“ Neuron Log Writer πŸ”¬ Neuron Fine-Tuning Workflow πŸ”¬ Neuron Agent Factory 🧠 Intent Phrase Scan (Safe)

Neuron is a composable AI framework that thinks in circuits, not chains.

Traditional AI orchestration tools collapse under real-world complexityβ€”contradictions, sarcasm, conflicting goals, or mixed data formats. Neuron addresses these breakdown zones through modular reasoning circuits inspired by how the brain actually processes information.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚            NEURON ARCHITECTURE          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              β”‚         β”‚         β”‚              β”‚
β–Ό              β–Ό         β–Ό         β–Ό              β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚Perceptionβ”‚ β”‚ Memory  β”‚ β”‚Synapticβ”‚ β”‚Reasoningβ”‚ β”‚Expressionβ”‚
β”‚ Modules  β”‚ β”‚ System  β”‚ β”‚  Bus   β”‚ β”‚ Modules β”‚ β”‚ Modules β”‚
β”‚          β”‚ β”‚         β”‚ β”‚       β”‚ β”‚         β”‚ β”‚         β”‚
β”‚β€’ Languageβ”‚β—„β–Ίβ”‚β€’ Episodicβ”‚β—„β–Ίβ”‚ Coord β”‚β—„β–Ίβ”‚β€’ Logic  β”‚β—„β–Ίβ”‚β€’ Responseβ”‚
β”‚β€’ Vision  β”‚ β”‚β€’ Semanticβ”‚ β”‚ Layer β”‚ β”‚β€’ Planningβ”‚ β”‚β€’ Adapt   β”‚
β”‚β€’ Audio   β”‚ β”‚β€’ Working β”‚ β”‚       β”‚ β”‚β€’ Temporalβ”‚ β”‚β€’ Format  β”‚
β”‚β€’ Multi.. β”‚ β”‚β€’ Context β”‚ β”‚       β”‚ β”‚β€’ Causal  β”‚ β”‚β€’ Tone    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               β”‚                           β”‚
               β–Ό                           β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ Self-Monitoring  β”‚      β”‚  Adaptability    β”‚
    β”‚                  β”‚      β”‚                  β”‚
    β”‚β€’ Error Detection β”‚      β”‚β€’ Dynamic Routing β”‚
    β”‚β€’ Uncertainty     β”‚      β”‚β€’ Context Shift   β”‚
    β”‚β€’ Explanation     β”‚      β”‚β€’ Resource Alloc  β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🧠 Why Neuron?

Cognitive Multi-Agent Architecture for Complex AI Systems

Neuron is a research framework exploring cognitive architectures through modular multi-agent coordination. Built on neuroscience-inspired principles, it provides sophisticated agent coordination patterns and memory systems for developing resilient AI applications.

πŸ”¬ Current Status: Advanced Research Platform - Production-ready architecture with agent behavior modeling. Suitable for research, prototyping, and foundational development of cognitive AI systems.

Neuron excels in scenarios traditional AI struggles with:

  • πŸ”„ Resilient Processing: Handles ambiguous inputs, contradictory information, and incomplete data without system failure
  • 🧠 Persistent Memory: Maintains context across extended interactions for longitudinal reasoning
  • ⚑ Selective Activation: Dynamically combines only needed capabilities rather than running every component
  • πŸ”€ Parallel Coordination: Processes multiple tasks simultaneously while maintaining consistency
  • πŸ‘οΈ Complete Observability: Every decision is traceable with full reasoning paths and evidence trails

Where Neuron Shines

Use Case Traditional AI Neuron Agent Approach
Contradictory Customer Requests Fails or picks one instruction Agent consensus detects contradiction, requests clarification
Multi-Session Medical History Loses context between visits Memory agents maintain episodic history with temporal reasoning
Emergency Response Triage Static rule-based priority Coordination agents provide dynamic multi-modal assessment
Regulatory Compliance Rigid rule checking Reasoning agents perform contextual interpretation with conflict resolution

🧠 Neuron: A Journey Through Modular Intelligence

Main Documentation

πŸ“š Documentation & Tutorials

πŸ€– Neuron as an Agent Orchestrator: How It Chooses, Evaluates, and Integrates Agents

View Documentation

πŸ“‹ Neuron Evaluation Notebook

Access Evaluation Framework

πŸ“š Neuron Framework Tutorial Series: Cognitive Architecture for Modular AI

Access Tutorials

πŸ—οΈ Building the Neuron Sandbox: Behind the Scenes of Modular AI Architecture

Development Insights

🌍 Applications & Case Studies

🌐 Real World Use Cases

Explore Use Cases

🎯 NeuroCircuit: The Multi-Agent System I Built for Reliable AI Focus

System Overview

πŸ₯ Neuron Fine-Tuning for Healthcare

Healthcare Applications

πŸš€ Quick Start

Installation

git clone https://github.com/ShaliniAnandaPhD/Neuron.git
cd Neuron
pip install -e .

Your First Agent Circuit

from neuron import initialize, create_agent, CircuitDefinition
from neuron.agents import ReflexAgent, DeliberativeAgent

# Initialize the agent framework
core = initialize()

# Define a cognitive reasoning circuit with agent coordination
circuit_def = CircuitDefinition.create(
    name="CustomerSupportCircuit",
    description="Handles complex customer issues with agent memory coordination",
    agents={
        "intake": {
            "type": "ReflexAgent",
            "role": "INPUT",
            "capabilities": ["sentiment_analysis", "intent_detection"]
        },
        "reasoner": {
            "type": "DeliberativeAgent", 
            "role": "PROCESSOR",
            "capabilities": ["contradiction_detection", "memory_retrieval"]
        },
        "responder": {
            "type": "ReflexAgent",
            "role": "OUTPUT",
            "capabilities": ["response_generation", "tone_adaptation"]
        }
    },
    connections=[
        {"source": "intake", "target": "reasoner", "type": "direct"},
        {"source": "reasoner", "target": "responder", "type": "conditional"}
    ]
)

# Deploy and test agent coordination
circuit_id = core.circuit_designer.create_circuit(circuit_def)
core.circuit_designer.deploy_circuit(circuit_id)

# Process a complex request through agent network
response = core.circuit_designer.send_input(circuit_id, {
    "customer_id": "12345",
    "message": "I love this product but it's completely broken and I want a refund but also keep it",
    "context": "third_complaint_this_month"
})

print(response)  # Agent network detects contradiction and requests clarification

πŸ—οΈ Core Agent Architecture

Specialized Agent Types

Neuron provides specialized agents for different cognitive functions:

# Quick response pattern-matching agents
reflex_agent = create_agent(ReflexAgent, 
    name="IntakeAgent",
    capabilities=["sentiment_analysis", "classification"])

# Deep reasoning and analysis agents  
deliberative_agent = create_agent(DeliberativeAgent,
    name="ReasoningAgent", 
    capabilities=["logical_inference", "contradiction_detection"])

# Learning and adaptation agents
learning_agent = create_agent(LearningAgent,
    name="AdaptiveAgent",
    capabilities=["pattern_recognition", "strategy_evolution"])

# Coordination and orchestration agents
coordinator_agent = create_agent(CoordinatorAgent,
    name="OrchestratorAgent",
    capabilities=["resource_allocation", "priority_management"])

Multi-Layered Memory Systems

Neuron implements sophisticated memory architecture for agent coordination:

# Access different memory types for agents
memory_manager = core.memory_manager

# Immediate context and active processing
working_memory = memory_manager.get_memory_system(MemoryType.WORKING)

# Sequential events and interaction history  
episodic_memory = memory_manager.get_memory_system(MemoryType.EPISODIC)

# Conceptual knowledge and relationships
semantic_memory = memory_manager.get_memory_system(MemoryType.SEMANTIC)

# Learned processes and strategies
procedural_memory = memory_manager.get_memory_system(MemoryType.PROCEDURAL)

# Store and retrieve contextual information across agents
episodic_memory.store({
    "event": "customer_complaint",
    "timestamp": "2024-01-15T10:30:00Z",
    "context": {"customer_id": "12345", "sentiment": "frustrated"},
    "resolution": "product_replacement_offered"
})

# Retrieve relevant past interactions for agent reasoning
relevant_history = episodic_memory.query(
    context={"customer_id": "12345"},
    timeframe="last_30_days"
)

SynapticBus Agent Communication

Agents communicate through a brain-inspired message passing system:

from neuron import Message

# Create and send messages between agents
message = Message.create(
    sender="intake_agent",
    recipients=["reasoning_agent", "memory_agent"],
    content={
        "type": "customer_issue",
        "data": {"sentiment": "mixed", "intent": "unclear"},
        "confidence": 0.75,
        "requires_reasoning": True
    },
    metadata={
        "priority": "high",
        "timeout": 30,
        "fallback_required": True
    }
)

await core.synaptic_bus.send(message)

Dynamic Agent Circuit Composition

Build adaptive processing pipelines that reconfigure agent routing based on context:

# Create circuits that adapt agent routing to complexity
adaptive_circuit = CircuitDefinition.create(
    name="AdaptiveReasoningCircuit",
    routing_strategy="confidence_based",
    fallback_strategy="graceful_degradation",
    agents={
        "simple_classifier": {
            "type": "ReflexAgent",
            "activation_threshold": 0.8,  # High confidence required
            "capabilities": ["quick_classification"]
        },
        "deep_reasoner": {
            "type": "DeliberativeAgent", 
            "activation_threshold": 0.3,  # Handles uncertain cases
            "capabilities": ["complex_reasoning", "uncertainty_quantification"]
        },
        "contradiction_resolver": {
            "type": "DeliberativeAgent",
            "activation_condition": "contradiction_detected",
            "capabilities": ["conflict_resolution", "clarification_generation"]
        }
    },
    decision_rules=[
        {
            "condition": "confidence > 0.8",
            "route": "simple_classifier"
        },
        {
            "condition": "contradiction_detected == True", 
            "route": "contradiction_resolver"
        },
        {
            "default": True,
            "route": "deep_reasoner"
        }
    ]
)

🎯 Real-World Agent Applications

Healthcare: Modular Compliance & Clinical Decision Support

# HIPAA-aware healthcare agent circuit
healthcare_circuit = CircuitDefinition.create(
    name="ClinicalDecisionSupport",
    compliance_modules=["hipaa_monitor", "clinical_guidelines"],
    agents={
        "triage": {"type": "ReflexAgent", "capabilities": ["symptom_analysis"]},
        "risk_scorer": {"type": "DeliberativeAgent", "capabilities": ["risk_assessment"]},
        "compliance_checker": {"type": "ValidatorAgent", "capabilities": ["hipaa_validation"]}
    }
)

Emergency Response: Multi-Modal Crisis Processing

# Crisis response with multi-format input handling agents
crisis_circuit = CircuitDefinition.create(
    name="EmergencyResponseSystem", 
    input_types=["text", "voice", "social_media", "sensor_data"],
    agents={
        "input_processor": {"capabilities": ["multi_modal_parsing"]},
        "priority_ranker": {"capabilities": ["urgency_assessment", "resource_allocation"]},
        "response_coordinator": {"capabilities": ["dispatch_optimization", "status_tracking"]}
    }
)

Customer Support: Multi-Session Relationship Management

# Customer retention with cross-session memory agents
support_circuit = CircuitDefinition.create(
    name="CustomerRetentionIntelligence",
    memory_integration=True,
    agents={
        "relationship_analyzer": {"capabilities": ["sentiment_tracking", "churn_prediction"]},
        "issue_resolver": {"capabilities": ["problem_solving", "escalation_management"]},
        "retention_strategist": {"capabilities": ["intervention_planning", "satisfaction_optimization"]}
    }
)

πŸ”§ Advanced Agent Features

Self-Monitoring and Error Detection

Neuron includes built-in agent reliability mechanisms:

# Configure agent monitoring and fallback behavior
monitoring_config = {
    "hallucination_detection": True,
    "uncertainty_quantification": True,
    "contradiction_detection": True,
    "automatic_fallback": True,
    "explanation_generation": True
}

# Monitor agent health in real-time
health_status = core.neuro_monitor.get_health_status()
performance_metrics = core.neuro_monitor.get_metrics("circuit.*")

Temporal Reasoning and Causal Analysis

# Enable temporal reasoning capabilities in agents
temporal_agent = create_agent(DeliberativeAgent,
    capabilities=[
        "timeline_reconstruction",
        "causal_chain_analysis", 
        "dependency_tracking",
        "scenario_projection"
    ]
)

# Analyze complex temporal scenarios
timeline_analysis = temporal_agent.process({
    "events": mixed_chronological_data,
    "analysis_type": "causal_dependencies",
    "projection_horizon": "30_days"
})

Agent Explainability Dashboard

Every agent decision in Neuron is fully traceable:

# Access detailed agent reasoning paths
explanation = core.explainability.get_decision_trace(
    circuit_id="customer_support_001",
    request_id="req_12345"
)

print(explanation.reasoning_tree)      # Step-by-step agent logic
print(explanation.confidence_scores)   # Certainty at each agent step  
print(explanation.alternative_paths)   # Other agent options considered
print(explanation.evidence_sources)    # Supporting information used by agents

πŸ”Œ Agent Microservices & Extensions

Neuron's modular architecture supports plug-and-play agent microservices:

Available Agent Microservices

  • πŸ” Ambiguity Resolution Agent: Detects and handles unclear inputs
  • βš–οΈ Contradiction Detection Agent: Identifies logical conflicts
  • 🧠 Memory Optimization Agent: Manages contextual memory efficiently
  • πŸ“Š Performance Analytics Agent: Tracks system-wide agent metrics
  • πŸ”§ Dynamic Reconfiguration Agent: Adapts agent circuits in real-time

Custom Agent Development

from neuron.microservices import BaseAgent

class CustomAnalysisAgent(BaseAgent):
    """Custom domain-specific analysis agent"""
    
    def __init__(self):
        super().__init__(name="domain_analyzer")
        
    async def process(self, input_data):
        # Your custom agent logic here
        analysis_result = self.analyze_domain_specifics(input_data)
        return {
            "analysis": analysis_result,
            "confidence": self.calculate_confidence(analysis_result),
            "recommendations": self.generate_recommendations(analysis_result)
        }

# Register and deploy your agent
core.agent_manager.register(CustomAnalysisAgent())

πŸ§ͺ Agent Testing and Evaluation

Built-in Agent Testing Framework

# Test agent circuit resilience
test_results = core.testing.run_stress_tests(
    circuit_id="customer_support_001",
    test_scenarios=[
        "contradictory_inputs",
        "incomplete_information", 
        "component_failures",
        "high_load_conditions"
    ]
)

# Evaluate agent memory persistence
memory_tests = core.testing.evaluate_memory_systems(
    retention_periods=["1_hour", "1_day", "1_week"],
    decay_patterns=["importance_weighted", "recency_based"]
)

Agent Performance Benchmarking

# Compare agent performance against other frameworks
benchmark_results = core.benchmarking.compare_against([
    "langchain_equivalent",
    "direct_api_calls", 
    "custom_pipeline"
], test_cases="real_world_scenarios")

🌟 Why Choose Neuron?

🌟 Why Choose Neuron's Agent Architecture?

vs. LangChain

  • Memory: Persistent multi-layered agent memory vs. token-level context
  • Reasoning: Parallel multi-agent coordination vs. sequential chains
  • Observability: Full agent decision traces vs. execution logs only
  • Adaptability: Dynamic agent reconfiguration vs. manual flow updates

vs. Direct API Calls

  • State Management: Rich agent memory systems vs. stateless calls
  • Error Handling: Graceful agent degradation vs. hard failures
  • Coordination: Multi-agent orchestration vs. single-shot responses
  • Explainability: Complete agent reasoning traces vs. black box outputs

vs. AutoGen/CrewAI

  • Brain-Inspired Design: Neuroscience-based agent principles vs. generic multi-agent
  • Memory Architecture: Sophisticated agent persistence vs. simple conversation history
  • Fault Tolerance: Component-level agent resilience vs. system-wide failures
  • Observability: Deep agent introspection vs. basic logging

πŸš€ Getting Started

  1. Install Neuron and run the quick start example
  2. Go through the Tutorials in Google Colab to understand the architecture
  3. Read the Evaluation Notebook to understand capabilities
  4. Join the Community for support and contributions

🀝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

πŸ“„ License

MIT License - see LICENSE for details.

References

  1. Anderson, J. R., & Lebiere, C. (2003). The Newell Test for a theory of cognition. Behavioral and Brain Sciences, 26(5), 587-640. Relevance: Foundational work on cognitive architectures that inspired Neuron's modular agent design and memory integration patterns.

  2. Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258. Relevance: Provides the theoretical framework for translating neuroscience principles into AI architectures, particularly memory systems and hierarchical processing.

  3. Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning perspective. Autonomous Robots, 8(3), 345-383. Relevance: Establishes foundational principles for multi-agent coordination and communication protocols that inform Neuron's SynapticBus architecture.

  4. Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1-25. Relevance: Seminal work on episodic memory systems that directly influenced Neuron's multi-layered memory architecture and temporal reasoning capabilities.

  5. Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. International Conference on Machine Learning, 1050-1059. Relevance: Theoretical foundation for uncertainty quantification methods used in Neuron's confidence-based routing and self-monitoring systems.

  6. Cox, M. T. (2005). Metacognition in computation: A selected research review. Artificial Intelligence, 169(2), 104-141. Relevance: Provides the conceptual framework for self-monitoring and introspective capabilities that enable Neuron's error detection and adaptive behavior mechanisms.

This software was created and is maintained by Shalini Ananda (GitHub: @ShaliniAnandaPhD). Any use of this framework without attribution, or any commercial repackaging, is a violation of the license terms and may constitute copyright infringement.

Please review the LICENSE.md for conditions. Reach out via GitHub Sponsors for partnership or licensing discussions.

About

Neuron is a composable agent framework inspired by cognitive neuroscience. It enables you to build, orchestrate, and monitor intelligent multi-agent systems using a modular circuit-based architecture.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors 2

  •  
  •