Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions src/conversation_terminator/remote/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,10 @@ def __new__(cls, context):
return cls.instance

async def inference(self, request: ModelRequest):
if request.model != 'NA':
model_name = str(request.model)
self.tokenizer = BertTokenizer.from_pretrained(model_name)
self.model = TFBertForSequenceClassification.from_pretrained(model_name)
inputs = self.tokenizer(request.text,return_tensors="np", padding=True)
outputs = self.model(inputs.input_ids, inputs.attention_mask)
probabilities = tf.nn.sigmoid(outputs.logits)
Expand Down
3 changes: 2 additions & 1 deletion src/conversation_terminator/remote/request.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,9 @@


class ModelRequest():
def __init__(self, text):
def __init__(self, text, model='NA'):
self.text = text
self.model = model

def to_json(self):
return json.dumps(self, default=lambda o: o.__dict__,
Expand Down
5 changes: 5 additions & 0 deletions src/text_classification/grievance_recognition/local/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,11 @@ def __new__(cls, context):


async def inference(self, request: ModelRequest):
if request.model != 'NA':
model_name = request.model
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)

inputs = self.tokenizer(request.text, return_tensors="pt")
inputs = {key: value.to(self.device) for key, value in inputs.items()}
with torch.no_grad():
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,9 @@


class ModelRequest():
def __init__(self, text):
def __init__(self, text, model='NA'):
self.text = text
self.model = model

def to_json(self):
return json.dumps(self, default=lambda o: o.__dict__,
Expand Down