A Machine Learning course specifically for highschool students based on the USAAIO course provided by Beaver-Edge AI.
IMPORTANT:If you want best experience please download the whole repo and run the ipynb for visualization!!!
-
- Prerequisites
- 0.1 Environment Setup (Anaconda, CUDA, VS Code, Python)
-
- Mathematical Foundations for AI
- 1.1 Linear Algebra
- 1.1.1 Vector Spaces, Subspaces, Basis, Orthonormal Vectors
- 1.1.2 Vector and Matrix Operations
- 1.1.3 Eigenvalues and Eigenvectors
- 1.1.4 Matrix Decompositions
- 1.2 Calculus
- 1.2.1 Single-Variable Derivatives
- 1.2.2 Multivariable Derivatives and Gradients
- 1.2.3 Chain Rule
- 1.3 Probability & Statistics
- 1.3.1 Discrete Distributions
- 1.3.2 Continuous Distributions
- 1.3.3 Expectation and Mean
- 1.3.4 Variance and Covariance
- 1.3.5 Bayes’ Rule
- 1.4 Convex Optimization
- 1.4.1 Convexity
- 1.4.2 Gradient Descent
- 1.4.3 Duality
-
- Python for AI
- 2.1 Advanced Python Techniques
- 2.2 NumPy
- 2.3 Pandas
- 2.4 Matplotlib
- 2.5 Seaborn
-
- Core Machine Learning
- 3.1 Terminology (Supervised, Unsupervised, Overfitting, etc.)
- 3.2 Linear Regression
- 3.3 Logistic Regression
- 3.4 Regularization, Bias–Variance Trade-off, Kernel Methods
- 3.5 Cross-Validation
- 3.6 k-Nearest Neighbors
- 3.7 K-Means Clustering
- 3.8 Support Vector Machines
- 3.9 Principal Component Analysis & Dimensionality Reduction (done)
- 3.10 Decision Trees
- 3.11 Random Forests
- 3.12 Boosting
-
- PyTorch Fundamentals
- 4.1 Tensors
- 4.2 Autograd
- 4.3 Devices (CPU/GPU)
- 4.4 Modules
- 4.5 Datasets
- 4.6 DataLoader & Collation
- 4.7 Loss Functions
- 4.8 Optimizers
-
- Deep Learning & Computer Vision
- 5.1 Multi-Layer Perceptron (MLP)
- 5.2 Forward Propagation & Activation Functions
- 5.3 Backpropagation & Gradient Descent (done)
- 5.4 Adam & Other Adaptive Optimizers
- 5.5 Parameter Initialization
- 5.6 Batch Normalization
- 5.7 Dropout
- 5.8 Convolutional Layers & Pooling Layers (done)
- 5.9 Convolutional Neural Networks (CNNs) (done)
- 5.10 Image Data Augmentation
- 5.11 VGG
- 5.12 ResNet
- 5.13 GoogLeNet (Inception)
- 5.14 Transfer Learning
-
- Transformers
- 6.1 Self-Attention
- 6.2 Cross-Attention
- 6.3 Masked Self-Attention
- 6.4 Layer Normalization
- 6.5 Word Embeddings
- 6.6 Positional Encoding
- 6.7 Batch Processing
- 6.8 Training Procedures
- 6.9 Inference & Deployment
- 6.10 Pre-training
- 6.11 Fine-tuning (Hugging Face)
- 6.12 BERT, T5, GPT
-
- Natural Language Processing & Graph Neural Networks
- 7.1 Character Tokenization
- 7.2 Subword Tokenization
- 7.3 Word Tokenization
- 7.4 Word Embedding Methods
- 7.4.1 Skip-Gram
- 7.4.2 Continuous Bag-of-Words
- 7.4.3 Global Vectors (GloVe)
- 7.5 Encoder-Only Transformers (BERT)
- 7.6 Decoder-Only Transformers (GPT)
- 7.7 Message-Passing Neural Networks
- 7.8 Graph Convolutional Networks
- 7.9 Vision Transformers
-
- OpenCV & Generative AI
- 8.1 Object Detection
- 8.2 Adversarial Attacks
- 8.3 U-Net
- 8.4 Autoencoders
- 8.5 Variational Autoencoders
- 8.6 Generative Adversarial Networks
- 8.7 Denoising Diffusion Probabilistic Models
- 8.8 Stable Diffusion