Reinforcement Learning and Optimization in Salzburg is a leading organization dedicated to advancing research, education, and innovation in the fields of reinforcement learning and optimization. Our mission is to foster collaboration among researchers, practitioners, and students to explore the latest developments and applications in these areas. We are part of the IDA Lab, which is affiliated with PLUS University Salzburg.
- Hirlaender, S., Kaiser, J., Xu, C., & Santamaria Garcia, A. (2024). Tutorial on Meta-Reinforcement Learning and GP-MPC at the RL4AA'24 Workshop. RL4AA'24 Workshop, Paris-Lodron-Universität Salzburg, Austria, February 5-7, 2024. Zenodo | GitHub
- Hirlaender, S., Lamminger, L., Zevi-Della-Porta, G., & Kain, V. (2023). Ultra Fast Reinforcement Learning in Accelerator Control Demonstrated on CERN AWAKE. In Proceedings of IPAC'23 (pp. 4459-4462). CERN Document Server | InspireHEP
-
Eichinger, S., Blanco-García, O., Bruchon, N., Corsini, R., Doebert, S., Farabolini, W., Hirlaender, S., & Latina, A. (2022). Towards Automatic Setup of 18 MeV Electron Beamline Using Machine Learning. Machine Learning: Science and Technology, 4, 025016. DOI: 10.1088/2632-2153/acce21 | arXiv:2209.03183
-
Grech, L., Valentino, G., Alves, D., & Hirlaender, S. (2022). Application of Reinforcement Learning in the LHC Tune Feedback. Frontiers in Physics, 10, 929064. DOI: 10.3389/fphy.2022.929064
-
Hirländer, S. (2022). Deep Meta Reinforcement Learning for Rapid Adaptation in Linear Markov Decision Processes: Applications to CERN's AWAKE Project. University of Salzburg Repository
- Scheinker, A., Hirlaender, S., Velotti, F. M., Gessner, S., Della Porta, G. Z., Kain, V., & Valentino, G. (2021). Online Multi-objective Particle Accelerator Optimization of the AWAKE Electron Beam Line for Simultaneous Emittance and Orbit Control. Frontiers in Physics, 9, 741639. DOI: 10.3389/fphy.2021.741639
-
Kain, V., Hirlander, S., Goddard, B., Velotti, F. M., Della Porta, G. Z., Bruchon, N., & Valentino, G. (2020). Sample-efficient Reinforcement Learning for CERN Accelerator Control. Physical Review Accelerators and Beams, 23(12), 124801. DOI: 10.1103/PhysRevAccelBeams.23.124801 | CERN Document Server
-
Hirlaender, S., & Bruchon, N. (2020). Model-free and Bayesian Ensembling Model-based Deep Reinforcement Learning for Particle Accelerator Control Demonstrated on the Fermi FEL. arXiv preprint arXiv:2012.09737. arXiv:2012.09737
-
Hirlaender, S., Kain, V., & Schenk, M. (2020). New Paradigms for Tuning Accelerators: Automatic Performance Optimization and First Steps Towards Reinforcement Learning at CERN. In Information, 12(7), 262. DOI: 10.3390/info12070262
Simon Hirlaender
Email: [email protected] or [email protected]
University homepage: https://www.plus.ac.at/aihi/der-fachbereich/ida-lab/teams/sarl/
IDA Lab Salzburg
Fachbereich Artificial Intelligence & Human Interfaces (AIHI)
Fakultät Digital & Analytical Sciences (DAS)
Paris Lodron Universität Salzburg (PLUS)
Jakob-Haringer-Straße 6 | Techno 6 | 5020 Salzburg | Austria
This is the official website for the Smart Analytics and Reinforcement Learning (SARL) Team at PLUS University Salzburg.
The website has been optimized for fast loading with the following techniques:
- Critical CSS Inlining: Essential styles are inlined in the HTML head to eliminate render-blocking CSS
- System Font Stack: Using system fonts first reduces font loading time
- Lazy Loading: Images and non-critical scripts use lazy loading
- CSS & JS Optimization: Combined and minified files reduce HTTP requests
- Responsive Design: Optimized for all device sizes