Skip to content

πŸš€ "Torchrun for the World" - Execute local functions on global computing resources while keeping data private. Next-generation distributed computing with zero cold-start latency.

License

Qingbolan/EasyRemote

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

28 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

EasyRemote: Building the Next-Generation Computing Internet - EasyNet

EasyRemote Logo

PyPI version License: MIT Python Version

"Torchrun for the World": Enabling any terminal user to mobilize global computing resources with a single command to execute local code.

🌐 Building the Next-Generation Computing Internet - EasyNet

English | δΈ­ζ–‡


🧠 From Private Functions to Global Computing Orchestration Engine

EasyRemote is not just a Private Function-as-a-Service (Private FaaS) platformβ€”it's our answer to the future of computing:

While current cloud computing models are platform-centric, requiring data and code to "go to the cloud" to exchange resources, we believeβ€”
The next-generation computing network should be terminal-centric, language-interfaced, function-granular, and trust-bounded.

We call it: "EasyNet".

🎯 Core Philosophy: Code as Resource, Device as Node, Execution as Collaboration

EasyRemote is the first-stage implementation of EasyNet, allowing you to:

  • 🧠 Define task logic using familiar Python function structures
  • πŸ”’ Deploy computing nodes on any device while maintaining privacy, performance, and control
  • 🌐 Transform local functions into globally accessible task interfaces through lightweight VPS gateways
  • πŸš€ Eventually launch tasks as simply as using torchrun, automatically scheduling to the most suitable resources for execution

πŸ’‘ Our Paradigm Shift

Traditional Cloud Computing EasyNet Mode
Platform-centric Terminal-centric
Code must go to cloud Code stays on your device
Pay for computing power Contribute to earn computing power
Vendor lock-in Decentralized collaboration
Cold start delays Always warm

πŸ”­ Current Implementation: Private Function-as-a-Service

Quick Experience: Join EasyNet with 12 Lines of Code

# 1. Start gateway node (any VPS)
from easyremote import Server
Server(port=8080).start()

# 2. Contribute computing node (your device)
from easyremote import ComputeNode
node = ComputeNode("your-gateway:8080")

@node.register
def ai_inference(prompt):
    return your_local_model.generate(prompt)  # Runs on your GPU

node.serve()

# 3. Global computing access (anywhere)
from easyremote import Client
result = Client("your-gateway:8080").execute("ai_inference", "Hello AI")

πŸŽ‰ Your device has joined EasyNet!

πŸ†š Comparison with Traditional Cloud Services

Feature AWS Lambda Google Cloud EasyNet Node
Computing Location Cloud servers Cloud servers Your device
Data Privacy Upload to cloud Upload to cloud Never leaves local
Computing Cost $200+/million calls $200+/million calls $5 gateway fee
Hardware Limitations Cloud specs Cloud specs Your GPU/CPU
Startup Latency 100-1000ms 100-1000ms 0ms (always online)

πŸ“š Complete Documentation Guide

🌐 Multilingual Documentation

πŸ‡ΊπŸ‡Έ English Documentation

πŸ‡¨πŸ‡³ Chinese Documentation

πŸš€ Quick Start

πŸ“– User Guide

πŸ—οΈ Technical Deep Dive

πŸ”¬ Research Materials


🌟 Three Major Breakthroughs of EasyNet

1. πŸ”’ Privacy-First Architecture

@node.register
def medical_diagnosis(scan_data):
    # Medical data never leaves your HIPAA-compliant device
    # But diagnostic services can be securely accessed globally
    return your_private_ai_model.diagnose(scan_data)

2. πŸ’° Economic Model Reconstruction

  • Traditional Cloud Services: Pay-per-use, costs increase exponentially with scale
  • EasyNet Model: Contribute computing power to earn credits, use credits to call others' computing power
  • Gateway Cost: $5/month vs traditional cloud $200+/million calls

3. πŸš€ Consumer Devices Participating in Global AI

# Your gaming PC can provide AI inference services globally
@node.register
def image_generation(prompt):
    return your_stable_diffusion.generate(prompt)

# Your MacBook can participate in distributed training
@node.register  
def gradient_computation(batch_data):
    return your_local_model.compute_gradients(batch_data)

🎯 Three-Paradigm Evolution: Computing Revolution Through Paradigmatic Leaps

"Computing Evolution is not linear progression, but paradigmatic leaps"

πŸš€ Paradigm 1: FDCN (Function-Driven Compute Network)

Core Innovation: From local calls β†’ cross-node function calls
Technical Expression: @remote decorator for transparent distributed execution
Paradigm Analogy: RPC β†’ gRPC β†’ EasyRemote (spatial decoupling of function calls)

# Traditional local calls
def ai_inference(data): return model.predict(data)

# EasyRemote: Function calls across global networks
@node.register  
def ai_inference(data): return model.predict(data)
result = client.execute("global_node.ai_inference", data)

Breakthrough Metrics:

  • API Simplicity: 25+ lines β†’ 12 lines (-52%)
  • Startup Latency: 100-1000ms β†’ 0ms (-100%)
  • Privacy Protection: Data to cloud β†’ Never leaves local

🧩 Paradigm 2: Intelligence-Linked Scheduling

Core Innovation: From explicit scheduling β†’ adaptive intelligent scheduling
Technical Expression: Intent-driven multi-objective optimization scheduling
Paradigm Analogy: Kubernetes β†’ Ray β†’ EasyRemote ComputePool

# Traditional explicit scheduling
client.execute("specific_node.specific_function", data)

# EasyRemote: Intelligent intent scheduling
result = await compute_pool.execute_optimized(
    task_intent="image_classification",
    requirements=TaskRequirements(accuracy=">95%", cost="<$5")
)
# System automatically: task analysis β†’ resource matching β†’ optimal scheduling

Breakthrough Metrics:

  • Scheduling Efficiency: Manual config β†’ Millisecond auto-decisions
  • Resource Utilization: 60% β†’ 85% (+42%)
  • Cognitive Load: Complex config β†’ Intent expression

🌟 Paradigm 3: Intent-Graph Execution

Core Innovation: From calling functions β†’ expressing intentions
Technical Expression: Natural language-driven expert collaboration networks
Paradigm Analogy: LangChain β†’ AutoGPT β†’ EasyRemote Intent Engine

# Traditional function call mindset
await compute_pool.execute_optimized(function="train_classifier", ...)

# EasyRemote: Natural language intent expression
result = await easynet.fulfill_intent(
    "Train a medical imaging AI with >90% accuracy for under $10"
)
# System automatically: intent understanding β†’ task decomposition β†’ expert discovery β†’ collaborative execution

Breakthrough Metrics:

  • User Barrier: Python developers β†’ General users (10M+ user scale)
  • Interaction Mode: Code calls β†’ Natural language
  • Collaboration Depth: Tool calls β†’ Intelligent agent networks

πŸ”„ Paradigm Spiral: Vertical Evolution Roadmap

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 Global Compute OS                          β”‚ ← Paradigm 3: Intent Layer
β”‚    "Train medical AI" β†’ Auto-coordinate global experts     β”‚   (Intent-Graph)
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β–²
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Compute Sharing Platform                       β”‚ ← Paradigm 2: Autonomous Layer  
β”‚    Intelligent scheduling + Multi-objective optimization    β”‚   (Intelligence-Linked)
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β–²
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚               Private Function Network                      β”‚ ← Paradigm 1: Function Layer
β”‚    @remote decorator + Cross-node calls + Load balancing   β”‚   (Function-Driven)  
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Ultimate Vision: Mobilize global computing as easily as using torchrun

$ easynet "Train a medical imaging AI with my local data, 95%+ accuracy required"
πŸ€– Understanding your needs, coordinating global medical AI expert nodes...
βœ… Found stanford-medical-ai and 3 other expert nodes, starting collaborative training...

πŸ”¬ Technical Architecture: Decentralization + Edge Computing

Network Topology

🌍 Global clients
    ↓
☁️ Lightweight gateway cluster (routing only, no computing)
    ↓
πŸ’» Personal computing nodes (actual execution)
    ↓
πŸ”— Peer-to-peer collaboration network

Core Technology Stack

  • Communication Protocol: gRPC + Protocol Buffers
  • Secure Transport: End-to-end encryption
  • Load Balancing: Intelligent resource awareness
  • Fault Tolerance: Automatic retry and recovery

🌊 Join the Computing Revolution

πŸ”₯ Why EasyNet Will Change Everything

Limitations of Traditional Models:

  • πŸ’Έ Cloud service costs grow exponentially with scale
  • πŸ”’ Data must be uploaded to third-party servers
  • ⚑ Cold starts and network latency limit performance
  • 🏒 Locked into major cloud service providers

EasyNet's Breakthroughs:

  • πŸ’° Computing Sharing Economy: Contribute idle resources, gain global computing power
  • πŸ” Privacy by Design: Data never leaves your device
  • πŸš€ Edge-First: Zero latency, optimal performance
  • 🌐 Decentralized: No single points of failure, no vendor lock-in

🎯 Our Mission

Redefining the future of computing: From a few cloud providers monopolizing computing power to every device being part of the computing network.

πŸš€ Join Now

# Become an early node in EasyNet
pip install easyremote

# Contribute your computing power
python -c "
from easyremote import ComputeNode
node = ComputeNode('demo.easynet.io:8080')
@node.register
def hello_world(): return 'Hello from my device!'
node.serve()
"

πŸ—οΈ Developer Ecosystem

Role Contribution Benefits
Computing Providers Idle GPU/CPU time Computing credits/token rewards
Application Developers Innovative algorithms and applications Global computing resource access
Gateway Operators Network infrastructure Routing fee sharing
Ecosystem Builders Tools and documentation Community governance rights

πŸ“ž Join the Community


🌟 "The future of software isn't deployed on the cloud, but runs on your system + EasyNet"

πŸš€ Ready to join the computing revolution?

pip install easyremote

Don't just see it as a distributed function tool β€” it's a prototype running on old-world tracks but heading towards a new-world destination.

⭐ If you believe in this new worldview, please give us a star!

About

πŸš€ "Torchrun for the World" - Execute local functions on global computing resources while keeping data private. Next-generation distributed computing with zero cold-start latency.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages