Markdown-driven software-lifecycle powered by AI agents
uv pip install ai-sdlc
AI-SDLC transforms software development into a structured, AI-assisted workflow that takes you from initial idea to production-ready code through 8 carefully designed steps.
- π― Structured Workflow: 8-step process from idea β PRD β architecture β tasks β tests
- π€ AI-Powered: Leverages AI agents for automated processing and iteration
- π Markdown-Driven: Everything lives in version-controlled markdown files
- π Iterative: Built-in support for refining ideas and requirements with AI chat
- π Production-Ready: Generates comprehensive task lists and test plans
- π¦ Zero Config: Works out of the box with sensible defaults
Traditional development often jumps straight to coding, missing crucial planning steps. AI-SDLC ensures you:
- β Never skip important planning phases
- β Document decisions and rationale
- β Generate comprehensive implementation plans
- β Create thorough test strategies
- β Maintain project history in version control
Get up and running with AI-SDLC in under 2 minutes:
# Install uv (fast Python package manager)
curl -LsSf https://astral.sh/uv/install.sh | sh
# Install AI-SDLC
uv pip install ai-sdlc# Create a new directory or use existing project
mkdir my-awesome-project && cd my-awesome-project
# Initialize AI-SDLC
aisdlc init# Create a new feature
aisdlc new "Add user authentication system"
# Check your progress
aisdlc status- Fill out the generated markdown in
doing/add-user-authentication-system/0-idea-*.md - Run
aisdlc nextto generate an AI prompt for the next step - Use the prompt with your preferred AI tool (Claude, ChatGPT, Cursor, etc.) and save the response
- Repeat until all 8 steps are complete
- Archive with
aisdlc done
π‘ Tip: AI-SDLC works with any AI tool - use your favorite AI assistant!
Option 1: Full CLI Workflow - Use the complete workflow with aisdlc commands that generate prompts for your AI tool
Option 2: Prompts Only - Just use the prompt templates manually with your preferred AI tool:
- Copy prompts from
prompts/directory - Use with any AI chat interface (Cursor, Claude, ChatGPT, etc.)
- Perfect for one-off projects or custom workflows
| Tool | Install (macOS example) |
|---|---|
| Python 3.13+ | brew install [email protected] or pyenv install 3.13.0 |
| uv | curl -LsSf https://astral.sh/uv/install | sh |
| AI Editor (optional) | Cursor, VS Code with AI extensions, or any AI chat interface |
# Option 1: Using uv (recommended)
uv pip install ai-sdlc
# Option 2: Using pip
pip install ai-sdlc
# Verify installation
aisdlc --helpThe AI-SDLC workflow follows an 8-step process from idea to tests:
flowchart TD
I[01-idea]-->P1[02-prd]-->P2[03-prd-plus]-->A[04-architecture]
A-->SP[05-system-patterns]-->T[06-tasks]-->TP[07-tasks-plus]-->TESTS[08-tests]
%% Iteration loop for steps 1-5
CHAT[π¬ Iterate with AI Chat]
I -.-> CHAT
P1 -.-> CHAT
P2 -.-> CHAT
A -.-> CHAT
SP -.-> CHAT
CHAT -.-> I
CHAT -.-> P1
CHAT -.-> P2
CHAT -.-> A
CHAT -.-> SP
%% Agent mode for steps 7-8
AGENT[π€ Use AI Agent Mode]
TP --- AGENT
TESTS --- AGENT
| Mode | Steps | Description | Best For |
|---|---|---|---|
| π¬ Chat Mode | 1-5 | Interactive iteration with AI chat | Refining ideas, requirements, architecture |
| π Manual Mode | 6 | Fill out markdown manually | Creating detailed task lists |
| π€ Agent Mode | 7-8 | Automated processing with AI agents | Task review, test generation |
- Initialize project:
aisdlc init - Start new feature:
aisdlc new "Your feature idea" - Progress through steps:
aisdlc next(repeat for each step) - Check status:
aisdlc status - Complete feature:
aisdlc done
| Command | Description | Example |
|---|---|---|
aisdlc init |
Initialize AI-SDLC in current directory | aisdlc init |
aisdlc new <idea> |
Start new feature with idea description | aisdlc new "Add user authentication" |
aisdlc next |
Progress to next step in workflow | aisdlc next |
aisdlc status |
Show current project status | aisdlc status |
aisdlc done |
Archive completed feature to done/ | aisdlc done |
aisdlc --help |
Show help information | aisdlc --help |
Working with steps:
- Each step creates a markdown file in
doing/<feature-slug>/ - Fill out the generated markdown before running
aisdlc next - AI agents process your input and generate the next step
- Alternative: Use prompt templates directly with any AI chat interface
flowchart TD
I[01-idea]-->P1[02-prd]-->P2[03-prd-plus]-->A[04-architecture]
A-->SP[05-system-patterns]-->T[06-tasks]-->TP[07-tasks-plus]-->TESTS[08-tests]
%% Iteration loop for steps 1-5
CHAT[π¬ Iterate with AI Chat]
I -.-> CHAT
P1 -.-> CHAT
P2 -.-> CHAT
A -.-> CHAT
SP -.-> CHAT
CHAT -.-> I
CHAT -.-> P1
CHAT -.-> P2
CHAT -.-> A
CHAT -.-> SP
%% Agent mode for steps 7-8
AGENT[π€ Use AI Agent Mode]
TP --- AGENT
TESTS --- AGENT
Workflow modes explained:
- Steps 1-5 (π¬ Chat Mode): You manually fill out markdown files and iterate with AI chat to refine your ideas, requirements, and architecture
- Step 6 (Tasks): Manual step to create implementation tasks
- Steps 7-8 (π€ Agent Mode): Automated processing using AI agents for task review and test generation
Running aisdlc next:
- Reads the previous markdown file
- Merges it into the prompt for the next step
- For steps 7-8: Calls AI agent (requires compatible AI editor or API)
- Writes the new markdown and bumps
.aisdlc.lock
Using prompts manually:
- Copy the appropriate prompt from
prompts/directory - Paste your previous step's content into the
<prev_step>placeholder - Use with any AI chat interface (Cursor, Claude, ChatGPT, etc.)
- Save the output as the next step's markdown file
.
βββ ai_sdlc/ # main Python package
β βββ cli.py # entry point for `aisdlc`
β βββ commands/ # sub-commands: init | new | next | status | done
β βββ scaffold_template/ # default templates for new projects
β βββ utils.py # shared helpers
βββ prompts/ # LLM templates for each SDLC step
β βββ 0.idea.instructions.md # initial idea analysis
β βββ 1.prd.instructions.md # product requirements
β βββ 2.prd-plus.instructions.md # enhanced requirements
β βββ 3.system-template.instructions.md # system architecture
β βββ 4.systems-patterns.instructions.md # design patterns
β βββ 5.tasks.instructions.md # implementation tasks
β βββ 6.tasks-plus.instructions.md # task list review & handoff preparation
β βββ 7.tests.instructions.md # test generation
βββ tests/ # pytest suite (unit + integration)
β βββ unit/ # unit tests
β βββ integration/ # integration tests
βββ doing/ # active features (created by init)
βββ done/ # completed features (created by init)
βββ .aisdlc # TOML config (ordered steps, dirs, diagram)
βββ .aisdlc.lock # current workflow state
βββ pyproject.toml # build + dependency metadata
βββ CHANGELOG.md # version history
βββ README.md # you are here
AI-SDLC is built around a simple but powerful concept: markdown-driven development with AI assistance.
-
CLI Interface (
ai_sdlc/cli.py)- Entry point for all commands
- Handles argument parsing and command routing
-
Command System (
ai_sdlc/commands/)- Modular command structure
- Each command handles a specific workflow step
-
Prompt Templates (
prompts/)- LLM prompts for each SDLC step
- Structured to guide AI through development process
-
State Management
.aisdlc- Project configuration.aisdlc.lock- Current workflow state- File-based state tracking
The workflow engine processes each step by:
- Reading the previous step's output
- Merging it with the appropriate prompt template
- Calling Cursor agent to generate next step
- Writing output and updating state
| Layer | Main libs / tools | Why |
|---|---|---|
| CLI | Python 3.13, click-style argparse (stdlib) |
modern syntax, zero deps runtime |
| Package mgmt | uv | fast, lock-file driven reproducibility |
| Dev tooling | Ruff, Pyright, pytest | lint + format, type-check, tests |
| AI Integration | Pluggable AI agents | works with any AI editor or API |
| Packaging | setuptools, PEP 621 metadata |
slim install |
[project]
name = "ai-sdlc"
requires-python = ">=3.13.0"
[project.optional-dependencies]
dev = [
"pytest>=7.0",
"pytest-mock>=3.0",
"ruff>=0.0.292",
"pyright>=1.1.350"
]| Tool | Install (macOS example) |
|---|---|
| Python 3.13+ | brew install [email protected] or pyenv install 3.13.0 |
| uv | curl -LsSf https://astral.sh/uv/install | sh |
| AI Editor (optional) | Cursor, VS Code with AI extensions, or any AI interface |
| Node 20 + pnpm* | brew install node pnpm (only if you touch TS helpers) |
git clone https://github.com/your-org/ai-sdlc.git
cd ai-sdlc
uv venv && source .venv/bin/activate
uv sync --all-features # installs runtime + dev deps from uv.lock
pre-commit install # optional hooks# install dev extras
uv pip install -e .[dev]
# lint + format
uv run ruff check ai_sdlc tests
uv run ruff format ai_sdlc tests
# type-check
uv run pyright
# run all tests
uv run pytest
# run specific test types
uv run pytest tests/unit/ # unit tests only
uv run pytest tests/integration/ # integration tests onlyIntegration tests spin up a temp project dir and exercise the CLI flow.
"AI agent command not found"
- AI-SDLC generates prompts that work with any AI tool
- No specific AI tool installation required
- Use the generated prompts with your preferred AI assistant
"Permission denied" errors
- Check file permissions in your project directory
- Ensure you have write access to the current directory
"Invalid .aisdlc configuration"
- Verify your
.aisdlcfile has valid TOML syntax - Run
aisdlc initto regenerate default configuration
"Lock file corruption"
- Delete
.aisdlc.lockand runaisdlc statusto regenerate - The tool handles corrupted lock files gracefully
- Check the command help:
aisdlc --helporaisdlc <command> --help - Review the CHANGELOG.md for recent changes
- Open an issue on GitHub with:
- Your OS and Python version
- Full error message
- Steps to reproduce
- Pluggable AI providers β flag
--modelto swap GPT-4o, Claude, Gemini, etc. - 09-release-plan step (CI/CD & deployment playbook)
- Context-window management (summaries / embeddings for large projects)
- Repomix integration for giant monorepos
- Template customization - custom prompt templates per project
- Parallel workflows - multiple features in development simultaneously
- Enhanced AI provider integrations (OpenAI API, Anthropic API, etc.)
- Web UI for workflow visualization
- Team collaboration features
- Metrics and analytics for development velocity
- Integration with project management tools
We welcome contributions! Here's how to get started:
- Fork and clone the repository
- Create a feature branch:
git checkout -b feat/your-feature - Make your changes with tests
- Run quality checks:
ruff check,pyright,pytestmust pass - Open a PR with a clear description
- Follow existing code style (enforced by Ruff)
- Add tests for new functionality
- Update documentation for user-facing changes
- Keep commits atomic and well-described
- Bug fixes - Check GitHub issues
- Documentation - Improve clarity and examples
- Testing - Expand test coverage
- Features - See roadmap above
- Prompt engineering - Improve LLM prompt templates
MIT Β© 2025 Parker Rex See LICENSE for details.
