Skip to content

[fix] fix eval using part of train #947

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: data4elm
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/lmflow/args.py
Original file line number Diff line number Diff line change
Expand Up @@ -561,7 +561,7 @@ class DatasetArguments:
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
"help": "The percentage of the train set used as validation set in case there's no eval dataset."
},
)
preprocessing_num_workers: Optional[int] = field(
Expand Down
49 changes: 22 additions & 27 deletions src/lmflow/datasets/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -265,15 +265,16 @@ def from_dict(self, dict_obj: dict, *args, **kwargs):


@classmethod
def create_from_dict(cls, dict_obj, *args, **kwargs):
def create_from_dict(cls, dict_obj, dataset_args: Optional[DatasetArguments] = None, backend: str = "huggingface"):
r"""
Returns
--------

Returns a Dataset object given a dict.
"""
empty_data_args = DatasetArguments(dataset_path=None)
dataset = Dataset(empty_data_args)
if dataset_args is None:
dataset_args = DatasetArguments(dataset_path=None)
dataset = Dataset(dataset_args, backend=backend)
return dataset.from_dict(dict_obj)


Expand Down Expand Up @@ -467,14 +468,12 @@ def sample(self, n: int, seed: int=42):
if self.backend == "huggingface":
sampled_dataset = self.backend_dataset.shuffle(seed=seed).select(range(n))
output_dataset = self.create_from_dict(
{
"type": self.get_type(),
"instances": [
{
col_name: sampled_dataset[col_name][i] for col_name in sampled_dataset.column_names
} for i in range(n)
]
}
dict_obj={
"type": self.get_type(),
"instances": [data_point for data_point in tqdm(sampled_dataset, desc="Train Dataset")]
},
dataset_args=self.data_args,
backend=self.backend,
)
return output_dataset
else:
Expand Down Expand Up @@ -506,24 +505,20 @@ def train_test_split(self, test_size: float=0.2, shuffle: bool=True, seed: int=4
test_size=test_size, shuffle=shuffle, seed=seed
)
train_dataset = self.create_from_dict(
{
"type": self.get_type(),
"instances": [
{
col_name: splited["train"][col_name][i] for col_name in splited["train"].column_names
} for i in range(len(splited["train"]))
]
}
dict_obj={
"type": self.get_type(),
"instances": [data_point for data_point in tqdm(splited["train"], desc="Train Dataset")]
},
dataset_args=self.data_args,
backend=self.backend,
)
test_dataset = self.create_from_dict(
{
"type": self.get_type(),
"instances": [
{
col_name: splited["test"][col_name][i] for col_name in splited["test"].column_names
} for i in range(len(splited["test"]))
]
}
dict_obj={
"type": self.get_type(),
"instances": [data_point for data_point in tqdm(splited["test"], desc="Test Dataset")]
},
dataset_args=self.data_args,
backend=self.backend,
)
return train_dataset, test_dataset
else:
Expand Down
94 changes: 46 additions & 48 deletions src/lmflow/pipeline/finetuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
import lmflow.optim.optimizers as optim
from lmflow.args import OptimizerNames, DatasetArguments, ModelArguments, FinetunerArguments
from lmflow.datasets.dataset import Dataset
from lmflow.models.hf_decoder_model import HFDecoderModel
from lmflow.pipeline.base_tuner import BaseTuner
from lmflow.pipeline.utils.peft_trainer import PeftTrainer, PeftSavingCallback

Expand Down Expand Up @@ -415,10 +416,28 @@ def create_optimizer(self):
self.optimizer = smp.DistributedOptimizer(self.optimizer)

return CustomizedOptimTrainer

def __tokenize_dataset(
self,
model: "HFDecoderModel",
dataset: "Dataset",
) -> "Dataset":
# Tokenization and text grouping must be done in the main process
with self.finetuner_args.main_process_first(desc="dataset map tokenization"):
tokenized_dataset = model.tokenize(dataset)
if self.data_args.disable_group_texts:
lm_dataset = tokenized_dataset
else:
lm_dataset = self.group_text(
tokenized_dataset,
model_max_length=model.get_max_length(),
)

return lm_dataset

def tune(self,
model,
dataset,
dataset: "Dataset",
transform_dataset_in_place=True,
data_collator=None):
"""
Expand All @@ -439,57 +458,38 @@ def tune(self,
if not transform_dataset_in_place:
dataset = copy.deepcopy(dataset)

# Tokenization and text grouping must be done in the main process
train_dataset = None
eval_dataset = None

if dataset.backend == "custom_multi_modal":
dataset.backend_dataset.register_tokenizer(
model.tokenizer, model.image_processor)
lm_dataset = dataset
train_dataset = dataset.get_backend_dataset()
else:
with finetuner_args.main_process_first(desc="dataset map tokenization"):
tokenized_dataset = model.tokenize(dataset)
if data_args.disable_group_texts:
lm_dataset = tokenized_dataset
else:
lm_dataset = self.group_text(
tokenized_dataset,
model_max_length=model.get_max_length(),
if finetuner_args.do_eval:
if finetuner_args.eval_dataset_path is None:
assert data_args.validation_split_percentage != 0, (
"You've set `do_eval=True`. If you don't provide an evaluation dataset using"
" `eval_dataset_path`, please set `validation_split_percentage` to a non-zero"
" value."
)

train_dataset = lm_dataset.get_backend_dataset()
logger.info(f"Number of train samples: {len(train_dataset)}")

if finetuner_args.do_eval:
eval_dataset_args = deepcopy(data_args)
eval_dataset_args.dataset_path = finetuner_args.eval_dataset_path
eval_dataset = Dataset(eval_dataset_args)
with finetuner_args.main_process_first(desc="dataset map tokenization"):
tokenized_dataset = model.tokenize(eval_dataset)
if data_args.disable_group_texts:
lm_dataset = tokenized_dataset
else:
lm_dataset = self.group_text(
tokenized_dataset,
model_max_length=model.get_max_length(),
train_dataset_raw, eval_dataset_raw = dataset.train_test_split(
test_size=data_args.validation_split_percentage / 100,
shuffle=True,
seed=finetuner_args.seed,
)
eval_dataset = lm_dataset.get_backend_dataset()
logger.info(f"Number of eval samples: {len(eval_dataset)}")

def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)

metric = evaluate.load("accuracy")

def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics but we need to shift the labels
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
return metric.compute(predictions=preds, references=labels)
train_dataset = self.__tokenize_dataset(model, train_dataset_raw).get_backend_dataset()
eval_dataset = self.__tokenize_dataset(model, eval_dataset_raw).get_backend_dataset()
else:
eval_dataset_args = deepcopy(data_args)
eval_dataset_args.dataset_path = finetuner_args.eval_dataset_path
eval_dataset_raw = Dataset(eval_dataset_args)
eval_dataset = self.__tokenize_dataset(model, eval_dataset_raw).get_backend_dataset()
logger.info(f"Number of eval samples: {len(eval_dataset)}")

else:
train_dataset = self.__tokenize_dataset(model, dataset).get_backend_dataset()
logger.info(f"Number of train samples: {len(train_dataset)}")

if finetuner_args.do_train:
if data_args.max_train_samples is not None:
Expand Down Expand Up @@ -583,8 +583,6 @@ def switch_active_layers(self):
tokenizer=model.get_tokenizer(),
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.do_eval else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics if training_args.do_eval else None,
callbacks=trainer_callbacks
)
# Training
Expand Down
Loading