Skip to content

NightKing-V/VisionReasoningSecuritySystem

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

20 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

VisionReasoningSecuritySystem

Category Tool / Tech Purpose / Description
🧠 ML Model YOLOv8 (Ultralytics) Object detection model fine-tuned for weapon detection
PyTorch .pt Model format used during inference
πŸ‹οΈ Training Transfer Learning Trained with custom dataset (Roboflow)
πŸ“ Dataset Format YOLO (labels .txt, data.yaml) Used for training, validation, and inference
πŸ§ͺ Inference Engine ultralytics Python package Handles model loading and inference pipeline
πŸŽ₯ Video Input OpenCV (cv2.VideoCapture) Captures webcam or mobile stream
Custom cam selector (list_available_cameras()) Lists available webcams and IP streams
πŸ“± IP Streaming IP Webcam Sends mobile camera feed over local network
🌐 UI Framework Streamlit Real-time interactive web app with live video + controls
πŸ“¦ Deployment Docker Containerized deployment of the app
Docker Compose Orchestrates multiple services (e.g., app + model + others)
--device /dev/video0 Grants container access to physical webcam
πŸ€– Notifications Telegram Bot (telebot / python-telegram-bot) Sends real-time alerts and status updates
Bot token + Chat ID For secure messaging
πŸ“Š Logging runs/detect/train*/, results.csv, labels.jpg YOLO training results, validation performance, and loss curves
🧠 Monitoring TensorBoard (optional) Training insights via logs (if enabled properly)
⏱️ Alert Control Python time.time() Prevents alert flooding using cooldown timer
πŸ”— LLM Reasoning LangChain Manages LLM pipeline and prompt engineering
πŸ€– Prompting Agent Open-source LLM (e.g. Mistral via Ollama) Generates human-readable descriptions of detected scenes

πŸ“Š Model Performance Summary

Class Images Instances Precision Recall [email protected] [email protected]:0.95
all 327 1042 0.645 0.496 0.528 0.293
Armed-Person 260 376 0.852 0.522 0.720 0.436
Rifle 274 405 0.855 0.306 0.484 0.220
Person 143 257 0.575 0.405 0.468 0.282
Knife 4 4 0.299 0.750 0.439 0.234

⚑ Inference Speed

  • Preprocess: 0.2ms
  • Inference: 2.0ms
  • Loss: 0.0ms
  • Postprocess: 1.7ms

πŸ”— Transfer Learned Model

Download Model: MEGA