https://towardsdatascience.com/5-minutes-cheat-sheet-explaining-all-machine-learning-models-3fea1cf96f05 
https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf 
https://www.freecodecamp.org/news/git-cheat-sheet/ 
https://www.pythoncheatsheet.org/ 
https://www.datacamp.com/cheat-sheet/python-seaborn-cheat-sheet 
https://www.python-graph-gallery.com/cheat-sheets/ 
https://intellipaat.com/blog/tutorial/python-tutorial/pandas-cheat-sheet/ 
https://www.edureka.co/blog/cheatsheets/jupyter-notebook-cheat-sheet 
- 
Introduction to GitHub and VScode 
 https://www.youtube.com/watch?v=IE_w8TdmwUE
 https://www.youtube.com/watch?v=VqCgcpAypFQ
 https://lab.github.com/githubtraining/introduction-to-github
 https://www.w3schools.com/git/git_intro.asp?remote=github
- 
Introduction to Jupyter notebook 
 https://www.youtube.com/watch?v=HW29067qVWk
- 
Introduction to Colab 
 https://www.youtube.com/watch?v=WFvY3qgtMqM
- 
Basics of Python 
 https://www.youtube.com/watch?v=7eh4d6sabA0
- 
Exploratory Data Analysis (EDA) 
 https://www.kaggle.com/code/alokevil/simple-eda-for-beginners/notebook
 https://www.youtube.com/watch?v=YRBdTw9TZPE
- 
Introduction to AI 
 https://becominghuman.ai/introduction-to-artificial-intelligence-5fba0148ec99
 https://www.youtube.com/watch?v=SSE4M0gcmvE
- 
Mini project : (you need to perform EDA on the given dataset) 
- 
Diving deeper into Al : Applications of Al and ML 
 https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/ai-vs-machine-learning-vs-deep-learning
 https://www.youtube.com/watch?v=cPZvDg6Tw5Q
 https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
- 
ML algorithms (Selection according to Speaker preference) 
- 
Linear Regression 
 https://www.youtube.com/watch?v=8jazNUpO3lQ&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=2 (single variable)
 https://www.youtube.com/watch?v=J_LnPL3Qg70&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=3 (multiple variables)
 https://www.youtube.com/watch?v=vsWrXfO3wWw&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=4 (gradient descent and cost function)
- 
Logistic Regression 
 https://www.youtube.com/watch?v=zM4VZR0px8E&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=8 (Binary classification)
 https://www.youtube.com/watch?v=J5bXOOmkopc&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=9 (multiclass classification)
- 
Naive Bayes 
 https://www.youtube.com/watch?v=PPeaRc-r1OI&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=15 (part 1)
 https://www.youtube.com/watch?v=nHIUYwN-5rM&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=16 (part 2)
- 
KNN 
 https://www.youtube.com/watch?v=CQveSaMyEwM&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=19
- 
SVM 
 https://www.youtube.com/watch?v=FB5EdxAGxQg&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=11
- 
Random forest 
 https://www.youtube.com/watch?v=ok2s1vV9XW0&list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index=12
-Speaker Sessions-
PROJECT SUBMISSIONS