pycvcqv provides some easy-to-use functions to calculate the
Coefficient of Variation (cv) and Coefficient of Quartile Variation (cqv)
with confidence intervals provided with all available methods.
pip install pycvcqvimport pandas as pd
from pycvcqv import coefficient_of_variation, cqv
coefficient_of_variation(
data=[
0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5, 4.4,
4.6, 5.4, 5.4, 5.7, 5.8, 5.9, 6.0, 6.6, 7.1, 7.9
],
multiplier=100,
ndigits=2
)
# {'cv': 57.77, 'lower': 41.43, 'upper': 98.38}
cqv(
data=[0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5, 4.4, 4.6, 5.4, 5.4],
multiplier=100,
)
# 51.7241
data = pd.DataFrame(
{
"col-1": pd.Series([0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5]),
"col-2": pd.Series([5.4, 5.4, 5.7, 5.8, 5.9, 6.0, 6.6, 7.1, 7.9]),
}
)
coefficient_of_variation(data=data, num_threads=3)
# columns cv lower upper
# 0 col-1 0.6076 0.3770 1.6667
# 1 col-2 0.1359 0.0913 0.2651
cqv(data=data, num_threads=-1)
# columns cqv
# 0 col-1 0.3889
# 1 col-2 0.0732
This project was generated with
python-package-template